& RedHat

Red Hat Enterprise Linux 8

Configuring and managing logical volumes

A guide to the configuration and management of LVM logical volumes

Last Updated: 2021-09-13

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

A guide to the configuration and management of LVM logical volumes

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This documentation collection provides instructions on how to manage LVM logical volumes on Red
Hat Enterprise Linux 8.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ...ttt e et 6
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ...ttt e e 7
CHAPTER 1. LOGICAL VOLUMES ...ttt ettt ettt e e e et e e e e eneeees 8
1.1. LVM ARCHITECTURE OVERVIEW 8
1.2. PHYSICAL VOLUMES 9
1.2.1. LVM physical volume layout 9
1.2.2. Multiple partitions on a disk 10

1.3. VOLUME GROUPS n
1.4. LVM LOGICAL VOLUMES n
1.4.1. Linear Volumes 1

1.4.2. Striped Logical Volumes 13
1.4.3. RAID logical volumes 14
1.4.4. Thinly-provisioned logical volumes (thin volumes) 15
1.4.5. Snapshot Volumes 16
1.4.6. Thinly-provisioned snapshot volumes 17
1.4.7. Cache Volumes 18
CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEMROLEScoiiiiiiiiiennnnnnn. 19
2.1.INTRODUCTION TO THE STORAGE ROLE 19
2.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE STORAGE SYSTEM ROLE 19
2.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM ON A BLOCK DEVICE 20
2.4, EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A FILE SYSTEM 21
2.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES 21
2.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK DISCARD 22
2.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT4 FILE SYSTEM 22
2.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT3 FILE SYSTEM 23
2.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING EXT4 OR EXT3 FILE SYSTEM USING THE
STORAGE RHEL SYSTEM ROLE 24
2.10. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE SYSTEM ON LVM USING THE STORAGE
RHEL SYSTEM ROLE 25
2.11. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP PARTITION USING THE STORAGE RHEL SYSTEM
ROLE 26
2.12. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM ROLE 26
2.13. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE SYSTEM ROLE 28
2.14. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE ROLE 29
2.15. ADDITIONAL RESOURCES 30
CHAPTER 3. DEPLOYING LV VM ittt ittt ettt ettt e et aa et et eeneeeeneenaneenaneenneenns 31
3.1. CREATING LVM PHYSICAL VOLUME 31
3.2. CREATING LVM VOLUME GROUP 31
3.3. CREATING LVM LOGICAL VOLUME 31
CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES ... ittt ittt eeieaeannennneenn, 33
4.1. USING CLI COMMANDS 33
Specifying units in a command line argument 33
Specifying volume groups and logical volumes 33
Increasing output verbosity 33
Displaying help for LVM CLI commands 34
4.2. CREATING AN LVM LOGICAL VOLUME ON THREE DISKS 34
4.3. CREATING A RAIDO (STRIPED) LOGICAL VOLUME 35
4.4, RENAMING LVM LOGICAL VOLUMES 37

CHAPTER 5. MODIFYING THE SIZE OF A LOGICAL VOLUME

CHAPTER 6. MANAGING LVM VOLUME GROUPS

CHAPTER 7. MANAGING LVM PHYSICAL VOLUMES

CHAPTER 8. DISPLAYING LVM COMPONENTS

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

4.5. REMOVING A DISK FROM A LOGICAL VOLUME
4.5.1. Moving extents to existing physical volumes
4.5.2. Moving Extents to a New Disk
4.6. CONFIGURING PERSISTENT DEVICE NUMBERS
4.7.SPECIFYING LVM EXTENT SIZE
4.8. MANAGING LVM LOGICAL VOLUMES USING RHEL SYSTEM ROLES
4.8.1. Example Ansible playbook to manage logical volumes
4.8.2. Additional resources
4.9. REMOVING LVM LOGICAL VOLUMES

5.1. GROWING LOGICAL VOLUMES

5.2. GROWING A FILE SYSTEM ON A LOGICAL VOLUME
5.3. SHRINKING LOGICAL VOLUMES

5.4. EXTENDING A STRIPED LOGICAL VOLUME

6.1. VOLUME GROUPS

6.2. DISPLAYING VOLUME GROUPS

6.3. COMBINING VOLUME GROUPS

6.4. SPLITTING AVOLUME GROUP

6.5. RENAMING LVM VOLUME GROUPS

6.6. MOVING A VOLUME GROUP TO ANOTHER SYSTEM

6.7. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP
6.8. REMOVING LVM VOLUME GROUPS

6.9. ADDITIONAL RESOURCES

7.1. SCANNING FOR BLOCK DEVICES TO USE AS PHYSICAL VOLUMES
7.2.SETTING THE PARTITION TYPE FOR A PHYSICAL VOLUME

7.3. RESIZING AN LVM PHYSICAL VOLUME

7.4. REMOVING PHYSICAL VOLUMES

7.5. ADDING PHYSICAL VOLUMES TO A VOLUME GROUP

7.6. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP

8.1. DISPLAYING LVM INFORMATION WITH THE LVM COMMAND
8.2. DISPLAYING PHYSICAL VOLUMES

8.3. DISPLAYING VOLUME GROUPS

8.4. DISPLAYING LOGICAL VOLUMES

9.1. CONTROLLING THE FORMAT OF THE LVM DISPLAY

9.2. LVM OBJECT DISPLAY FIELDS

9.3. SORTING LVM REPORTS

9.4. SPECIFYING THE UNITS FOR AN LVM REPORT DISPLAY
9.5. DISPLAYING LVM COMMAND OUTPUT IN JSON FORMAT
9.6. DISPLAYING THE LVM COMMAND LOG

10.1. RAID LOGICAL VOLUMES

10.2. RAID LEVELS AND LINEAR SUPPORT

10.3. LVM RAID SEGMENT TYPES

10.4. CREATING RAID LOGICAL VOLUMES

10.5. CREATING A RAIDO (STRIPED) LOGICAL VOLUME

38
38
39
40
40
40
40

41

41

43
43
43
44
45

47
47
47
48
48
49
50

51

51
52

53
53
53
54
54
54
54

56
56
56
57
58

59
59
60
69
69
70

71

73
73
73
75
77
77

Table of Contents

10.6. USING DM INTEGRITY WITH RAID LV 79
10.6.1. Soft data corruption 79
10.6.2. Creating a RAID LV with DM integrity 80
10.6.3. Adding DM integrity to an existing RAID LV 81
10.6.4. Removing integrity from a RAID LV 81
10.6.5. Viewing DM integrity information 82
10.6.6. Additional resources 83

10.7. CONTROLLING THE RATE AT WHICH RAID VOLUMES ARE INITIALIZED 83

10.8. CONVERTING A LINEAR DEVICE TO A RAID DEVICE 84

10.9. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM LINEAR LOGICAL VOLUME 85

10.10. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 DEVICE 85

10.11. RESIZING A RAID LOGICAL VOLUME 86

10.12. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1 DEVICE 86

10.13. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL VOLUME 88

10.14. SPLITTING AND MERGING A RAID IMAGE 89

10.15. SETTING A RAID FAULT POLICY 91
10.15.1. The allocate RAID Fault Policy 91
10.15.2. The warn RAID Fault Policy 92

10.16. REPLACING A RAID DEVICE IN A LOGICAL VOLUME 93
10.16.1. Replacing a RAID device that has not failed 93
10.16.2. Failed devices in LVM RAID 96
10.16.3. Recovering a failed RAID device in a logical volume 96
10.16.4. Replacing a failed RAID device in a logical volume 96

10.17. CHECKING DATA COHERENCY IN A RAID LOGICAL VOLUME (RAID SCRUBBING) 98

10.18. CONVERTING A RAID LEVEL (RAID TAKEOVER) 100

10.19. CHANGING ATTRIBUTES OF A RAID VOLUME (RAID RESHAPE) 100

10.20. CONTROLLING I/O OPERATIONS ON A RAID1 LOGICAL VOLUME 100

10.21. CHANGING THE REGION SIZE ON A RAID LOGICAL VOLUME 100

CHAPTER 11. SNAPSHOT LOGICAL VOLUMESttt eae e 101

11.1. SNAPSHOT VOLUMES 101

11.2. CREATING SNAPSHOT VOLUMES 102

11.3. MERGING SNAPSHOT VOLUMES 104

CHAPTER 12. CREATING AND MANAGING THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES)

105

12.1. THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES) 105
12.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES 105
12.3. THINLY-PROVISIONED SNAPSHOT VOLUMES 108
12.4. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES 109
12.5. TRACKING AND DISPLAYING THIN SNAPSHOT VOLUMES THAT HAVE BEEN REMOVED m
CHAPTER 13. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE ns
13.1. CACHING METHODS IN LVM 15
13.2. LVM CACHING COMPONENTS 15
13.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME 15
13.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A LOGICAL VOLUME n7
13.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL VOLUME 18
13.6. DISABLING CACHING FOR A LOGICAL VOLUME 120
CHAPTER 14. LOGICAL VOLUME ACTIVATION .. i et 121
14.1. CONTROLLING AUTOACTIVATION OF LOGICAL VOLUMES 121
14.2. CONTROLLING LOGICAL VOLUME ACTIVATION 122
14.3. ACTIVATING SHARED LOGICAL VOLUMES 122

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

14.4. ACTIVATING A LOGICAL VOLUME WITH MISSING DEVICES 123
CHAPTER 15. CONTROLLING LVM DEVICESCANNING ...ttt e e eaneeenneennnens 124
15.1. THE LVM DEVICE FILTER 124
15.2. EXAMPLES OF LVM DEVICE FILTER CONFIGURATIONS 124
15.3. APPLYING AN LVM DEVICE FILTER CONFIGURATION 125
CHAPTER 16. LAYERING LVM PHYSICAL VOLUMES ON TOP OF LOGICAL VOLUMES 126
CHAPTER 17. CONTROLLING LVM ALLOCATION .ttt it ti e eie et eaeeeneeraneennneens 127
17.1. LVM ALLOCATION POLICIES 127
17.2. PREVENTING ALLOCATION ON A PHYSICAL VOLUME 128
17.3. EXTENDING A LOGICAL VOLUME WITH THE CLING ALLOCATION POLICY 128
17.4. DIFFERENTIATING BETWEEN LVM RAID OBJECTS USING TAGS 130
CHAPTER 18. GROUPING LVM OBUECTS WITH TAGS ...ttt ittt ettt eeieneenanaennnennn 131
18.1. LVM OBJECT TAGS 131
18.2. LISTING LVM TAGS 131
18.3. ADDING LVM OBJECT TAGS 131
18.4. REMOVING LVM OBJECT TAGS 132
18.5. DEFINING LVM HOST TAGS 132
18.6. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS 132
CHAPTER 19. TROUBLESHOOTING LV M .ttt ittt ettt e e et e eeneeannens 134
19.1. GATHERING DIAGNOSTIC DATA ON LVM 134
19.2. DISPLAYING INFORMATION ON FAILED LVM DEVICES 135
19.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME GROUP 136
19.4. RECOVERING AN LVM PHYSICAL VOLUME WITH DAMAGED METADATA 137
19.4.1. Discovering that an LVM volume has missing or corrupted metadata 137
19.4.2. Finding the metadata of a missing LVM physical volume 137
19.4.3. Restoring metadata on an LVM physical volume 138
19.5. REPLACING A MISSING LVM PHYSICAL VOLUME 140
19.5.1. Finding the metadata of a missing LVM physical volume 140
19.5.2. Restoring metadata on an LVM physical volume 140
19.6. TROUBLESHOOTING LVM RAID 142
19.6.1. Checking data coherency in a RAID logical volume (RAID scrubbing) 142
19.6.2. Failed devices in LVM RAID 144
19.6.3. Recovering a failed RAID device in a logical volume 144
19.6.4. Replacing a failed RAID device in a logical volume 144
19.7. TROUBLESHOOTING INSUFFICIENT FREE EXTENTS FOR A LOGICAL VOLUME 146
19.7.1. Volume groups 146
19.7.2. Rounding errors in LVM output 146
19.7.3. Preventing the rounding error when creating an LVM volume 147
19.8. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME WARNINGS FOR MULTIPATHED LVM DEVICES
148
19.8.1. Root cause of duplicate PV warnings 148
19.8.2. Cases of duplicate PV warnings 148
19.8.3. The LVM device filter 149
19.8.4. Example LVM device filters that prevent duplicate PV warnings 149
19.8.5. Applying an LVM device filter configuration 150
19.8.6. Additional resources 150

Table of Contents

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

® Forsimple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.
3. Click the Add Feedback pop-up that appears below the highlighted text.
4. Follow the displayed instructions.

® For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.
2. As the Component, use Documentation.

3. Fillin the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

CHAPTER 1. LOGICAL VOLUMES

Volume management creates a layer of abstraction over physical storage, allowing you to create logical
storage volumes. This provides much greater flexibility in a number of ways than using physical storage
directly. In addition, the hardware storage configuration is hidden from the software so it can be resized
and moved without stopping applications or unmounting file systems. This can reduce operational costs.

Logical volumes provide the following advantages over using physical storage directly:

® Flexible capacity
When using logical volumes, file systems can extend across multiple disks, since you can
aggregate disks and partitions into a single logical volume.

® Resizeable storage pools
You can extend logical volumes or reduce logical volumes in size with simple software
commands, without reformatting and repartitioning the underlying disk devices.

® Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data while your
system is active. Data can be rearranged on disks while the disks are in use. For example, you
can empty a hot-swappable disk before removing it.

® Convenient device naming
Logical storage volumes can be managed in user-defined and custom named groups.

® Disk striping
You can create a logical volume that stripes data across two or more disks. This can dramatically
increase throughput.

® Mirroring volumes
Logical volumes provide a convenient way to configure a mirror for your data.

® \/olume snapshots
Using logical volumes, you can take device snapshots for consistent backups or to test the
effect of changes without affecting the real data.

® Thin volumes
Logical volumes can be thinly provisioned. This allows you to create logical volumes that are
larger than the available extents.

® Cache volumes
A cache logical volume uses a small logical volume consisting of fast block devices (such as SSD
drives) to improve the performance of a larger and slower logical volume by storing the
frequently used blocks on the smaller, faster logical volume.

1.1. LVM ARCHITECTURE OVERVIEW

The underlying physical storage unit of an LVM logical volume is a block device such as a partition or
whole disk. This device is initialized as an LVM physical volume (PV).

To create an LVM logical volume, the physical volumes are combined into a volume group (VG). This
creates a pool of disk space out of which LVM logical volumes (LVs) can be allocated. This process is
analogous to the way in which disks are divided into partitions. A logical volume is used by file systems
and applications (such as databases).

CHAPTER 1. LOGICAL VOLUMES

Figure 1.1, “LVM logical volume components” shows the components of a simple LVM logical volume:

Figure 1.1. LVM logical volume components

S e

Logical Logical
Volume Volume

Volume Group

4
| I |

Physical Physical Physical

Volume Volume Volume

1.2. PHYSICAL VOLUMES

The underlying physical storage unit of an LVM logical volume is a block device such as a partition or
whole disk. To use the device for an LVM logical volume, the device must be initialized as a physical
volume (PV). Initializing a block device as a physical volume places a label near the start of the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default by
placing the label on any of the first 4 sectors when you create the physical volume. This allows LVM
volumes to co-exist with other users of these sectors, if necessary.

An LVM label provides correct identification and device ordering for a physical device, since devices can
come up in any order when the system is booted. An LVM label remains persistent across reboots and
throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique identifier
(the UUID) for the physical volume. It also stores the size of the block device in bytes, and it records
where the LVM metadata will be stored on the device.

The LVM metadata contains the configuration details of the LVM volume groups on your system. By
default, an identical copy of the metadata is maintained in every metadata area in every physical volume
within the volume group. LVM metadata is small and stored as ASCII.

Currently LVM allows you to store O, 1 or 2 identical copies of its metadata on each physical volume. The
default is 1 copy. Once you configure the number of metadata copies on the physical volume, you cannot
change that number at a later time. The first copy is stored at the start of the device, shortly after the
label. If there is a second copy, it is placed at the end of the device. If you accidentally overwrite the area
at the beginning of your disk by writing to a different disk than you intend, a second copy of the
metadata at the end of the device will allow you to recover the metadata.

1.2.1. LVM physical volume layout

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Figure 1.2, “Physical volume layout” shows the layout of an LVM physical volume. The LVM label is on the
second sector, followed by the metadata area, followed by the usable space on the device.

NOTE

In the Linux kernel (and throughout this document), sectors are considered to be 512
bytes in size.

Figure 1.2. Physical volume layout

w = VM Label (Second sector)
w 4 Metadata
¢ Vm

Usable Space

1.2.2. Multiple partitions on a disk

LVM allows you to create physical volumes out of disk partitions. Red Hat recommends that you create a
single partition that covers the whole disk to label as an LVM physical volume for the following reasons:

® Administrative convenience
It is easier to keep track of the hardware in a system if each real disk only appears once. This
becomes particularly true if a disk fails. In addition, multiple physical volumes on a single disk
may cause a kernel warning about unknown partition types at boot.

® Striping performance
LVM cannot tell that two physical volumes are on the same physical disk. If you create a striped
logical volume when two physical volumes are on the same physical disk, the stripes could be on
different partitions on the same disk. This would result in a decrease in performance rather than
anincrease.

Although it is not recommended, there may be specific circumstances when you will need to divide a disk
into separate LVM physical volumes. For example, on a system with few disks it may be necessary to
move data around partitions when you are migrating an existing system to LVM volumes. Additionally, if
you have a very large disk and want to have more than one volume group for administrative purposes
then it is necessary to partition the disk. If you do have a disk with more than one partition and both of
those partitions are in the same volume group, take care to specify which partitions are to be included in
a logical volume when creating striped volumes.

Note that although LVM supports using a non-partitioned disk as physical volume (PV), it is
recommended to create a single, whole-disk partition for the following reasons:

® Creating a PV without a partition can be problematic in a mixed operating system environment.

Other operating systems may interpret the device as free, and overwrite the PV label at the
beginning of the drive.

10

CHAPTER 1. LOGICAL VOLUMES

® Creating PVs on multiple partitions of the same device can result in loss of performance or
redundancy. For example, it might place striped or RAID1 layouts on different partitions that
actually exist on the same device.

1.3. VOLUME GROUPS

Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out of which
logical volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size called
extents. An extent is the smallest unit of space that can be allocated. Within a physical volume, extents
are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent size
is thus the same for all logical volumes in the volume group. The volume group maps the logical extents
to physical extents.

1.4.LVM LOGICAL VOLUMES

In LVM, a volume group is divided up into logical volumes. An administrator can grow or shrink logical
volumes without destroying data, unlike standard disk partitions. If the physical volumes in a volume
group are on separate drives or RAID arrays, then administrators can also spread a logical volume across
the storage devices.

You can lose data if you shrink a logical volume to a smaller capacity than the data on the volume
requires. To ensure maximum flexibility, create logical volumes to meet your current needs, and leave
excess storage capacity unallocated. You can safely extend logical volumes to use unallocated space,
depending on your needs.

IMPORTANT

On AMD, Intel, ARM systems, and IBM Power Systems servers, the boot loader cannot
read LVM volumes. You must make a standard, non-LVM disk partition for your /boot
partition. On IBM Z, the zipl boot loader supports /boot on LVM logical volumes with
linear mapping. By default, the installation process always creates the / and swap
partitions within LVM volumes, with a separate /boot partition on a physical volume.

The following sections describe the different types of logical volumes.

1.4.1. Linear Volumes

A linear volume aggregates space from one or more physical volumes into one logical volume. For
example, if you have two 60GB disks, you can create a 120GB logical volume. The physical storage is
concatenated.

Creating a linear volume assigns a range of physical extents to an area of a logical volume in order. For
example, as shown in Figure 1.3, "Extent Mapping” logical extents 1to 99 could map to one physical
volume and logical extents 100 to 198 could map to a second physical volume. From the point of view of
the application, there is one device that is 198 extents in size.

1

R

12

ed Hat Enterprise Linux 8 Configuring and managing logical volumes

Figure 1.3. Extent Mapping

Application

Logical Volume
198 logical extents

Volume Group

maps logical extents to
physical extents

Physical Volume Physical Volume
99 physical extents 99 physical extents

The physical volumes that make up a logical volume do not have to be the same size. Figure 1.4, “Linear
volume with unequal physical volumes” shows volume group VG1 with a physical extent size of 4MB.
This volume group includes 2 physical volumes named PV1 and PV2. The physical volumes are divided
into 4MB units, since that is the extent size. In this example, PV1 is 200 extents in size (800MB) and
PV2 is 100 extents in size (400MB). You can create a linear volume any size between 1and 300 extents
(4MB to 1200MB). In this example, the linear volume named LV1 is 300 extents in size.

Figure 1.4. Linear volume with unequal physical volumes

Lv1
300 extents
(1200 MB)
V&1
r N
PV1 PVZ
200 extents 100 extents
(200 ME) (400 ME)

CHAPTER 1. LOGICAL VOLUMES

You can configure more than one linear logical volume of whatever size you require from the pool of
physical extents. Figure 1.5, “Multiple logical volumes” shows the same volume group asin Figure 1.4,
“Linear volume with unequal physical volumes”, but in this case two logical volumes have been carved
out of the volume group: LV1, which is 250 extents in size (I000MB) and LV2 which is 50 extents in size

(200MB).

Figure 1.5. Multiple logical volumes

Lv1

250 extents r ;:2 Sent

(1000 MB) SOLSREN
(200 MB)

PV1 =

200 extents r:: St

et :4uui:ta:? &4

1.4.2. Striped Logical Volumes

When you write data to an LVM logical volume, the file system lays the data out across the underlying
physical volumes. You can control the way the data is written to the physical volumes by creating a
striped logical volume. For large sequential reads and writes, this can improve the efficiency of the data

/0.

13

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Striping enhances performance by writing data to a predetermined number of physical volumes in
round-robin fashion. With striping, I/O can be done in parallel. In some situations, this can result in near-
linear performance gain for each additional physical volume in the stripe.
The following illustration shows data being striped across three physical volumes. In this figure:
® the first stripe of data is written to the first physical volume
® the second stripe of data is written to the second physical volume
® the third stripe of data is written to the third physical volume
e the fourth stripe of data is written to the first physical volume
In a striped logical volume, the size of the stripe cannot exceed the size of an extent.
Figure 1.6. Striping data across three PVs
Logical
Volume

Physical Physical
Volume Volume

Striped logical volumes can be extended by concatenating another set of devices onto the end of the
first set. In order to extend a striped logical volume, however, there must be enough free space on the
set of underlying physical volumes that make up the volume group to support the stripe. For example, if
you have a two-way stripe that uses up an entire volume group, adding a single physical volume to the
volume group will not enable you to extend the stripe. Instead, you must add at least two physical
volumes to the volume group.

1.4.3. RAID logical volumes

LVM supports RAID levels O, 1,4, 5, 6, and 10.

14

CHAPTER 1. LOGICAL VOLUMES

An LVM RAID volume has the following characteristics:

® RAID logical volumes created and managed by LVM leverage the Multiple Devices (MD) kernel
drivers.

® You can temporarily split RAID1images from the array and merge them back into the array later.
® | VM RAID volumes support snapshots.

Clusters

RAID logical volumes are not cluster-aware.

Although you can create and activate RAID logical volumes exclusively on one machine, you cannot
activate them simultaneously on more than one machine.

Subvolumes

When you create a RAID logical volume, LVM creates a metadata subvolume that is one extent in size
for every data or parity subvolume in the array.

For example, creating a 2-way RAID1 array results in two metadata subvolumes (lv_rmeta_0 and
Iv_rmeta_1) and two data subvolumes (lv_rimage_0 and Iv_rimage_1). Similarly, creating a 3-way
stripe (plus Timplicit parity device) RAID4 results in 4 metadata subvolumes (lv_rmeta_0, Iv_rmeta_1,
Iv_rmeta_2, and Iv_rmeta_3) and 4 data subvolumes (lv_rimage_0, Iv_rimage_1, Iv_rimage_2, and
Iv_rimage_3).

Integrity

You can lose data when a RAID device fails or when soft corruption occurs. Soft corruption in data
storage implies that the data retrieved from a storage device is different from the data written to that
device. Adding integrity to a RAID LV helps mitigate or prevent soft corruption. To learn more about soft
corruption and how to add integrity to a RAID LV, see Section 10.6, “"Using DM integrity with RAID LV".

1.4.4. Thinly-provisioned logical volumes (thin volumes)

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger than
the available extents. Using thin provisioning, you can manage a storage pool of free space, known as a
thin pool, which can be allocated to an arbitrary number of devices when needed by applications. You
can then create devices that can be bound to the thin pool for later allocation when an application
actually writes to the logical volume. The thin pool can be expanded dynamically when needed for cost-
effective allocation of storage space.

NOTE

Thin volumes are not supported across the nodes in a cluster. The thin pool and all its thin
volumes must be exclusively activated on only one cluster node.

By using thin provisioning, a storage administrator can overcommit the physical storage, often avoiding
the need to purchase additional storage. For example, if ten users each request a I00GB file system for
their application, the storage administrator can create what appears to be a 100GB file system for each
user but which is backed by less actual storage that is used only when needed.

15

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

NOTE

When using thin provisioning, it is important that the storage administrator monitor the
storage pool and add more capacity if it starts to become full.

To make sure that all available space can be used, LVM supports data discard. This allows for re-use of
the space that was formerly used by a discarded file or other block range.

For information on creating thin volumes, see Creating thinly-provisioned logical volumes .

Thin volumes provide support for a new implementation of copy-on-write (COW) snapshot logical
volumes, which allow many virtual devices to share the same data in the thin pool. For information on
thin snapshot volumes, see Thinly-provisioned snapshot volumes .

1.4.5. Snapshot Volumes

The LVM snapshot feature provides the ability to create virtual images of a device at a particular instant
without causing a service interruption. When a change is made to the original device (the origin) after a
snapshot is taken, the snapshot feature makes a copy of the changed data area as it was prior to the
change so that it can reconstruct the state of the device.

NOTE

LVM supports thinly-provisioned snapshots.

Because a snapshot copies only the data areas that change after the snapshot is created, the snapshot
feature requires a minimal amount of storage. For example, with a rarely updated origin, 3-5 % of the
origin’s capacity is sufficient to maintain the snapshot.

NOTE

Snapshot copies of a file system are virtual copies, not an actual media backup for a file
system. Snapshots do not provide a substitute for a backup procedure.

The size of the snapshot governs the amount of space set aside for storing the changes to the origin
volume. For example, if you made a snapshot and then completely overwrote the origin the snapshot
would have to be at least as big as the origin volume to hold the changes. You need to dimension a
snapshot according to the expected level of change. So for example a short-lived snapshot of a read-
mostly volume, such as /usr, would need less space than a long-lived snapshot of a volume that sees a
greater number of writes, such as /home.

If a snapshot runs full, the snapshot becomes invalid, since it can no longer track changes on the origin
volume. You should regularly monitor the size of the snapshot. Snapshots are fully resizable, however, so
if you have the storage capacity you can increase the size of the snapshot volume to prevent it from
getting dropped. Conversely, if you find that the snapshot volume is larger than you need, you can
reduce the size of the volume to free up space that is needed by other logical volumes.

When you create a snapshot file system, full read and write access to the origin stays possible. If a chunk
on a snapshot is changed, that chunk is marked and never gets copied from the original volume.

There are several uses for the snapshot feature:

® Most typically, a snapshot is taken when you need to perform a backup on a logical volume
without halting the live system that is continuously updating the data.

16

CHAPTER 1. LOGICAL VOLUMES

® You can execute the fsck command on a snapshot file system to check the file system integrity
and determine whether the original file system requires file system repair.

® Because the snapshot is read/write, you can test applications against production data by taking
a snapshot and running tests against the snapshot, leaving the real data untouched.

® You can create LVM volumes for use with Red Hat Virtualization. LVM snapshots can be used to
create snapshots of virtual guest images. These snapshots can provide a convenient way to
modify existing guests or create new guests with minimal additional storage.

You can use the --merge option of the Ivconvert command to merge a snapshot into its origin volume.
One use for this feature is to perform system rollback if you have lost data or files or otherwise need to
restore your system to a previous state. After you merge the snapshot volume, the resulting logical
volume will have the origin volume’s name, minor number, and UUID and the merged snapshot is
removed.

1.4.6. Thinly-provisioned snapshot volumes

Red Hat Enterprise Linux provides support for thinly-provisioned snapshot volumes. Thin snapshot
volumes allow many virtual devices to be stored on the same data volume. This simplifies administration
and allows for the sharing of data between snapshot volumes.

As for all LVM snapshot volumes, as well as all thin volumes, thin snapshot volumes are not supported
across the nodes in a cluster. The snapshot volume must be exclusively activated on only one cluster
node.

Thin snapshot volumes provide the following benefits:

® A thin snapshot volume can reduce disk usage when there are multiple snapshots of the same
origin volume.

e |f there are multiple snapshots of the same origin, then a write to the origin will cause one COW
operation to preserve the data. Increasing the number of snapshots of the origin should yield no
major slowdown.

® Thin snapshot volumes can be used as a logical volume origin for another snapshot. This allows
for an arbitrary depth of recursive snapshots (snapshots of snapshots of snapshots...).

® Asnapshot of a thin logical volume also creates a thin logical volume. This consumes no data
space until a COW operation is required, or until the snapshot itself is written.

® A thin snapshot volume does not need to be activated with its origin, so a user may have only the
origin active while there are many inactive snapshot volumes of the origin.

® When you delete the origin of a thinly-provisioned snapshot volume, each snapshot of that
origin volume becomes an independent thinly-provisioned volume. This means that instead of
merging a snapshot with its origin volume, you may choose to delete the origin volume and then
create a new thinly-provisioned snapshot using that independent volume as the origin volume
for the new snapshot.

Although there are many advantages to using thin snapshot volumes, there are some use cases for which
the older LVM snapshot volume feature may be more appropriate to your needs:

® You cannot change the chunk size of a thin pool. If the thin pool has a large chunk size (for

example, IMB) and you require a short-living snapshot for which a chunk size that large is not
efficient, you may elect to use the older snapshot feature.

17

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

® You cannot limit the size of a thin snapshot volume; the snapshot will use all of the space in the
thin pool, if necessary. This may not be appropriate for your needs.

In general, you should consider the specific requirements of your site when deciding which snapshot
format to use.

NOTE

When using thin provisioning, it is important that the storage administrator monitor the
storage pool and add more capacity if it starts to become full. For information on
configuring and displaying information on thinly-provisioned snapshot volumes, see
Creating thinly-provisioned snapshot volumes .

1.4.7. Cache Volumes

LVM supports the use of fast block devices (such as SSD drives) as write-back or write-through caches
for larger slower block devices. Users can create cache logical volumes to improve the performance of

their existing logical volumes or create new cache logical volumes composed of a small and fast device

coupled with a large and slow device.

18

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL
SYSTEM ROLES

To manage LVM and local file systems (FS) using Ansible, you can use the storage role, which is one of
the RHEL System Roles available in RHEL 8.

Using the storage role enables you to automate administration of file systems on disks and logical
volumes on multiple machines and across all versions of RHEL starting with RHEL 7.7.

For more information about RHEL System Roles and how to apply them, see Introduction to RHEL
System Roles.

2.1.INTRODUCTION TO THE STORAGE ROLE
The storage role can manage:

® File systems on disks which have not been partitioned

® Complete LVM volume groups including their logical volumes and file systems
With the storage role you can perform the following tasks:

® Create a file system

® Remove a file system

® Mount a file system

e Unmount a file system

® Create LVM volume groups

® Remove LVM volume groups

® Create logical volumes

® Remove logical volumes

® Create RAID volumes

® Remove RAID volumes

® Create LVM pools with RAID

® Remove LVM pools with RAID

2.2. PARAMETERS THAT IDENTIFY ASTORAGE DEVICE IN THE
STORAGE SYSTEM ROLE

Your storage role configuration affects only the file systems, volumes, and pools that you list in the
following variables.

storage_volumes

List of file systems on all unpartitioned disks to be managed.
Partitions are currently unsupported.

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-rhel-system-roles_configuring-basic-system-settings#intro-to-rhel-system-roles_getting-started-with-rhel-system-roles

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

storage_pools

List of pools to be managed.

Currently the only supported pool type is LVM. With LVM, pools represent volume groups (VGs).
Under each pool there is a list of volumes to be managed by the role. With LVM, each volume
corresponds to a logical volume (LV) with a file system.

2.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM
ON A BLOCK DEVICE

This section provides an example Ansible playbook. This playbook applies the storage role to create an
XFS file system on a block device using the default parameters.

' WARNING
A The storage role can create a file system only on an unpartitioned, whole disk or a

logical volume (LV). It cannot create the file system on a partition.

Example 2.1. A playbook that creates XFS on /dev/sdb

- hosts: all
vars:
storage_volumes:
- name: barefs
type: disk
disks:
- sdb
fs_type: xfs
roles:
- rhel-system-roles.storage

® The volume name (barefs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

® You can omit the fs_type: xfs line because XFS is the default file system in RHEL 8.
® To create the file system on an LV, provide the LVM setup under the disks: attribute,

including the enclosing volume group. For details, see Example Ansible playbook to manage
logical volumes.

Do not provide the path to the LV device.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/assembly_configuring-lvm-volumes-configuring-and-managing-logical-volumes#an-example-playbook-to-manage-logical-volumes_managing-lvm-logical-volumes-using-rhel-system-roles

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

2.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A
FILE SYSTEM

This section provides an example Ansible playbook. This playbook applies the storage role to
immediately and persistently mount an XFS file system.

- hosts: all
vars:
storage_volumes:
- name: barefs
type: disk
disks:
- sdb
fs_type: xfs
mount_point: /mnt/data
roles:
- rhel-system-roles.storage
e This playbook adds the file system to the /etc/fstab file, and mounts the file system
immediately.

e |f the file system on the /dev/sdb device or the mount point directory do not exist, the

Example 2.2. A playbook that mounts a file system on /dev/sdb to /mnt/data
playbook creates them.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES

This section provides an example Ansible playbook. This playbook applies the storage role to create an
LVM logical volume in a volume group.

- sdc
volumes:
- name: mylv
size: 2G
fs_type: ext4
mount_point: /mnt
roles:

Example 2.3. A playbook that creates a mylv logical volume in the myvg volume group
- sda
- rhel-system-roles.storage

- hosts: all
vars:
storage_pools:
- name: myvg
disks:
- sdb

21

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

The myvg volume group consists of the following disks:

o /dev/sda
o /dev/sdb
o /dev/sdc

e |f the myvg volume group already exists, the playbook adds the logical volume to the volume
group.

e |f the myvg volume group does not exist, the playbook creates it.

® The playbook creates an Ext4 file system on the mylv logical volume, and persistently
mounts the file system at /mnt.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK
DISCARD

This section provides an example Ansible playbook. This playbook applies the storage role to mount an
XFS file system with online block discard enabled.

- hosts: all
vars:
storage_volumes:
- name: barefs
type: disk
disks:
- sdb

fs_type: xfs
mount_point: /mnt/data
mount_options: discard

roles:

Example 2.4. A playbook that enables online block discard on /mnt/data/
- rhel-system-roles.storage

Additional resources

® Example Ansible playbook to persistently mount a file system

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN
EXT4 FILE SYSTEM

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/managing-local-storage-using-rhel-system-roles_managing-file-systems#an-example-ansible-playbook-to-persistently-mount-a-file-system_managing-local-storage-using-rhel-system-roles

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

This section provides an example Ansible playbook. This playbook applies the storage role to create and
mount an Ext4 file system.

- hosts: all
vars:
storage_volumes:
- name: barefs
type: disk
disks:
- sdb
fs_type: ext4
fs_label: label-name
mount_point: /mnt/data
roles:
- rhel-system-roles.storage

® The playbook creates the file system on the /dev/sdb disk.
® The playbook persistently mounts the file system at the /mnt/data directory.

Example 2.5. A playbook that creates Ext4 on /dev/sdb and mounts it at /mnt/data
® The label of the file system is label-name.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN
EXT3 FILE SYSTEM

This section provides an example Ansible playbook. This playbook applies the storage role to create and
mount an Ext3 file system.

- hosts: all
vars:
storage_volumes:
- name: barefs
type: disk
disks:
- sdb
fs_type: ext3
fs_label: label-name
mount_point: /mnt/data
roles:
- rhel-system-roles.storage

Example 2.6. A playbook that creates Ext3 on/dev/sdb and mounts it at/mnt/data
® The playbook creates the file system on the /dev/sdb disk.

23

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

® The playbook persistently mounts the file system at the /mnt/data directory.

® The label of the file system is label-name.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING EXT4 OR
EXT3 FILESYSTEM USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage role to resize an
existing Ext4 or Ext3 file system on a block device.
vars:
storage_volumes:
disks:
- /dev/sdb

Example 2.7. A playbook that set up a single volume on a disk
- name: Create a disk device mounted on /opt/barefs
- hosts: all
- name: barefs
type: disk
size: 12 GiB
fs_type: ext4
mount_point: /opt/barefs

roles:
- rhel-system-roles.storage

same playbook, just with a different value for the parameter size. For example:
storage_volumes:
disks:

e |f the volume in the previous example already exists, to resize the volume, you need to run the

Example 2.8. A playbook that resizesext4 on/dev/sdb

- name: Create a disk device mounted on /opt/barefs

- hosts: all

vars:
- name: barefs
type: disk
- /dev/sdb
size: 10 GiB

fs_type: ext4
mount_point: /opt/barefs
roles:
- rhel-system-roles.storage

24

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

® The volume name (barefs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

NOTE

Using the Resizing action in other file systems can destroy the data on the device you
are working on.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.10. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE
SYSTEM ON LVM USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage RHEL System
Role to resize an LVM logical volume with a file system.

' WARNING
A Using the Resizing action in other file systems can destroy the data on the device

you are working on.

Example 2.9. A playbook that resizes existing mylvl and myvi2 logical volumes in the myvg
volume group

- hosts: all
vars:
storage_pools:
- name: myvg
disks:
- /dev/sda
- /dev/sdb
- /dev/sdc
volumes:
- name: mylv1
size: 10 GiB
fs_type: ext4
mount_point: /opt/mount1
- name: mylv2
size: 50 GIiB
fs_type: ext4
mount_point: /opt/mount2

25

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

- name: Create LVM pool over three disks
incude_role:
name: rhel-system-roles.storage

® This playbook resizes the following existing file systems:

o The Ext4 file system on the mylv1 volume, which is mounted at /opt/mount1, resizes to
10 GiB.

o The Ext4 file system on the mylv2 volume, which is mounted at /opt/mount2, resizes to
50 GiB.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.11. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP PARTITION
USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage role to create a
swap partition, if it does not exist, or to modify the swap partition, if it already exist, on a block device
using the default parameters.

- name: Create a disk device with swap
- hosts: all
vars:
storage_volumes:
- name: swap_fs
type: disk
disks:
- /dev/sdb
size: 15 GiB
fs_type: swap
roles:
- rhel-system-roles.storage

® The volume name (swap_fsin the example) is currently arbitrary. The storage role identifies

Example 2.10. A playbook that creates or modify an existing XFS on /dev/sdb
the volume by the disk device listed under the disks: attribute.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.12. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM
ROLE

26

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

With the storage System Role, you can configure a RAID volume on RHEL using Red Hat Ansible
Automation Platform. In this section you will learn how to set up an Ansible playbook with the available
parameters to configure a RAID volume to suit your requirements.

Prerequisites

® You have Red Hat Ansible Engine installed on the system from which you want to run the
playbook.

NOTE

You do not have to have Red Hat Ansible Automation Platform installed on the
systems on which you want to deploy the storage solution.

® You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

® You have an inventory file detailing the systems on which you want to deploy a RAID volume
using the storage System Role.

Procedure

1. Create a new playbook.ymlfile with the following content:

- hosts: all
vars:
storage_safe_mode: false
storage_volumes:
- name: data
type: raid
disks: [sdd, sde, sdf, sdg]
raid_level: raid0
raid_chunk_size: 32 KiB
mount_point: /mnt/data
state: present
roles:
- name: rhel-system-roles.storage

' WARNING
A Device names can change in certain circumstances; for example, when you

add a new disk to a system. Therefore, to prevent data loss, we do not
recommend using specific disk names in the playbook.

2. Optional. Verify playbook syntax.
I # ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

27

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

I # ansible-playbook -i inventory.file /path/to/file/playbook.ym|

Additional resources

® Managing RAID.

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.13. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE
SYSTEM ROLE

With the storage System Role, you can configure an LVM pool with RAID on RHEL using Red Hat
Ansible Automation Platform. In this section you will learn how to set up an Ansible playbook with the
available parameters to configure an LVM pool with RAID.

Prerequisites

® You have Red Hat Ansible Engine installed on the system from which you want to run the
playbook.

NOTE

You do not have to have Red Hat Ansible Automation Platform installed on the
systems on which you want to deploy the storage solution.

® You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

® You have an inventory file detailing the systems on which you want to configure an LVM pool
with RAID using the storage System Role.

Procedure

1. Create a new playbook.ymlfile with the following content:

- hosts: all
vars:
storage_safe_mode: false
storage_pools:
- name: my_pool
type: lvm
disks: [sdh, sdi]
raid_level: raid1
volumes:
- name: my_pool
size: "1 GiB"
mount_point: "/mnt/app/shared"
fs_type: xfs
state: present
roles:
- name: rhel-system-roles.storage

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-raid_managing-storage-devices

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

NOTE

To create an LVM pool with RAID, you must specify the RAID type using the
raid_level parameter.

2. Optional. Verify playbook syntax.
I # ansible-playbook --syntax-check playbook.yml
3. Run the playbook on your inventory file:

I # ansible-playbook -i inventory.file /path/to/file/playbook.ym|

Additional resources

® Managing RAID.

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.14. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE
ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

® You have Red Hat Ansible Engine installed on the system from which you want to run the
playbook.

NOTE

You do not have to have Red Hat Ansible Automation Platform installed on the
systems on which you want to create the volume.

ol

® You have the rhel-system-roles package installed on the Ansible controller.

® You have an inventory file detailing the systems on which you want to deploy a LUKS encrypted
volume using the storage System Role.

Procedure

1. Create a new playbook.ymlfile with the following content:

- hosts: all
vars:
storage_volumes:
- name: barefs

type: disk
disks:
- sdb
fs_type: xfs
fs_label: label-name

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-raid_managing-storage-devices

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

mount_point: /mnt/data
encryption: true
encryption_password: your-password
roles:
- rhel-system-roles.storage

2. Optional: Verify playbook syntax:
I # ansible-playbook --syntax-check playbook.yml
3. Run the playbook on your inventory file:

I # ansible-playbook -i inventory.file /path/to/file/playbook.ym|

Additional resources

® Encrypting block devices using LUKS

e /usr/share/ansible/roles/rhel-system-roles.storage/README.md file

2.15. ADDITIONAL RESOURCES
e /usr/share/doc/rhel-system-roles/storage/

e /usr/share/ansible/roles/rhel-system-roles.storage/

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices

CHAPTER 3. DEPLOYING LVM

CHAPTER 3. DEPLOYING LVM

The following procedures represent the basic configuration for LVM logical volumes on a freshly
installed operating system.

3.1. CREATING LVM PHYSICAL VOLUME

This procedure describes how to create and label LVM physical volumes (PVs).

Prerequisites

® The lvm2 package is installed.

Procedure

1. To create multiple physical volumes, use the space-delimited device names as arguments to
pvcreate command:

I # pvcreate /dev/vdb1 /dev/vdb2

This place a label on /dev/vdbl and /dev/vdb2, marking them as physical volumes belonging to
LVM.

For more information, see pvcreate man page.

3.2. CREATING LVM VOLUME GROUP

This procedure describes how to create an LVM volume group (VG).

Prerequisites

® The lvm2 package is installed.

® One or more physical volumes are created. See the instruction how to do so in Section 3.],
“Creating LVM physical volume”.

Procedure
1. To create a volume group, use the following command:
I # vgcreate myvg /dev/vdb1 /dev/vdb2

This creates a VG with the name of myvg. The PVs /dev/vdbland /dev/vdb2 are the base
storage level for the VG myvg.

For more information, see vgcreate man page.

Itis possible to extend the above VG with the PVs later. To extend a VG, use the following command:

I # vgextend myvg /dev/vdb3
3.3. CREATING LVM LOGICAL VOLUME

31

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

This procedure describes how to create LVM logical volume (LV).

Prerequisites

® The lvm2 package is installed.

® The volume group is created. See the instruction how to do so in Section 3.2, “Creating LVM
volume group”.

Procedure

1. To create a logical volume, use the following command:
I # Ivcreate -n Iv07 -L 500M myvg

The -n option allows the user to set the LV name to /vOI. The -L option allows the user to set the
size of LV in units of Mb in this example, but it is possible to use any other units. The LV type is
linear by default, but the user can specify the desired type by using the --type option.

IMPORTANT

The command will fail if the VG does not have a sufficient number of free
physical extents for the requested size and type.

For more information, see the lvcreate man page.

32

CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES

CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES

The following procedures provide examples of basic LVM administration tasks.

4.1. USING CLI COMMANDS

The following sections describe some general operational features of LVM CLI commands.

Specifying units in a command line argument

When sizes are required in a command line argument, units can always be specified explicitly. If you do
not specify a unit, then a default is assumed, usually KB or MB. LVM CLI commands do not accept
fractions.

When specifying units in a command line argument, LVM is case-insensitive; specifying M or m is
equivalent, for example, and powers of 2 (multiples of 1024) are used. However, when specifying the --
units argument in a command, lower-case indicates that units are in multiples of 1024 while upper-case
indicates that units are in multiples of 1000.

Specifying volume groups and logical volumes
Note the following when specifying volume groups or logical volumes in an LVM CLI command.

® Where commands take volume group or logical volume names as arguments, the full path name
is optional. A logical volume called Ivol0 in a volume group called vgO0 can be specified as
vg0/IvolO.

® Where a list of volume groups is required but is left empty, a list of all volume groups will be
substituted.

® Where a list of logical volumes is required but a volume group is given, a list of all the logical
volumes in that volume group will be substituted. For example, the lvdisplay vg0 command will
display all the logical volumes in volume group vgo.

Increasing output verbosity
All LVM commands accept a -v argument, which can be entered multiple times to increase the output
verbosity. The following examples shows the default output of the Ivereate command.

Ivcreate -L 50MB new_vg
Rounding up size to full physical extent 52.00 MB
Logical volume "Ivol0" created

The following command shows the output of the Ivereate command with the -v argument.

Ivcreate -v -L 50MB new_vg
Rounding up size to full physical extent 52.00 MB
Archiving volume group "new_vg" metadata (seqno 1).
Creating logical volume Ivol0
Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 2).
Activating logical volume new_vg/IvolO.
activation/volume_list configuration setting not defined: Checking only host tags for new_vg/Ivol0.
Creating new_vg-Ivol0
Loading table for new_vg-lvol0 (253:0).
Resuming new_vg-Ivol0 (253:0).
Wiping known signatures on logical volume "new_vg/Ivol0"
Initializing 4.00 KiB of logical volume "new_vg/Ilvol0" with value 0.
Logical volume "Ivol0" created

33

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

The -vv, -vvv and the -vvvv arguments display increasingly more details about the command execution.
The -vvvv argument provides the maximum amount of information at this time. The following example

shows the first few lines of output for the lvcreate command with the -vvvv argument specified.

Ivcreate -vvvv -L 50MB new_vg

#lvmemdline.c:913 Processing: Ivcreate -vvvv -L 50MB new_vg
#lvmemdline.c:916 O_DIRECT will be used
#config/config.c:864 Setting global/locking_type to 1
#locking/locking.c:138 File-based locking selected.
#config/config.c:841 Setting global/locking_dir to /var/lock/lvm
#activate/activate.c:358 Getting target version for linear
#ioctl/libdm-iface.c:1569 dm version OF [16384]
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#activate/activate.c:358 Getting target version for striped
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#config/config.c:864 Setting activation/mirror_region_size to 512

Displaying help for LVM CLI commands
You can display help for any of the LVM CLI commands with the --help argument of the command.

I # commandname --help
To display the man page for a command, execute the man command:
I # man commandname

The man lvm command provides general online information about LVM.

4.2. CREATING AN LVM LOGICAL VOLUME ON THREE DISKS

This example procedure creates an LVM logical volume called mylv that consists of the disks at
/dev/sdal, /dev/sdb1, and /dev/sdc1.

1. To use disks in a volume group, label them as LVM physical volumes with the pvcreate
command.

' WARNING
A This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sdal /dev/sdb1 /dev/sdc1
Physical volume "/dev/sda1" successfully created
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdc1" successfully created

2. Create the a volume group that consists of the LVM physical volumes you have created. The
following command creates the volume group myvg.

34

CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES

vgcreate myvg /dev/sdal /dev/sdb1 /dev/sdc1
Volume group "myvg" successfully created

You can use the vgs command to display the attributes of the new volume group.

#vgs
VG #PV #LV #SN Attr VSize VFree
myvg 3 0 O wz--n-51.45G 51.45G

3. Create the logical volume from the volume group you have created. The following command
creates the logical volume mylv from the volume group myvg. This example creates a logical
volume that uses 2 gigabytes of the volume group.

Ivcreate -L 2G -n mylv myvg
Logical volume "mylv" created

4. Create a file system on the logical volume. The following command creates an ext4 file system
on the logical volume.

mkfs.ext4 /dev/imyvg/mylv
mke2fs 1.44.3 (10-July-2018)
Creating filesystem with 524288 4k blocks and 131072 inodes
Filesystem UUID: 616da032-8a48-4cd7-8705-bd94b7a1c8c4
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Allocating group tables: done
Writing inode tables: done

Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

The following commands mount the logical volume and report the file system disk space usage.

mount /dev/myvg/mylv /mnt

df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/myvg-mylv 1998672 6144 1871288 1% /mnt

4.3. CREATING A RAIDO (STRIPED) LOGICAL VOLUME

A RAIDO logical volume spreads logical volume data across multiple data subvolumes in units of stripe
size.

The format for the command to create a RAIDO volume is as follows.

Ivcreate --type raid0[_meta] --stripes Stripes --stripesize StripeSize VolumeGroup
[PhysicalVolumePath ...]

Table 4.1. RAIDO Command Creation parameters

35

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Parameter Description

--type raid0[_meta] Specifying raid0 creates a RAIDO volume without
metadata volumes. Specifying raid0_meta creates
a RAIDO volume with metadata volumes. Because
RAIDO is non-resilient, it does not have to store any
mirrored data blocks as RAID1/10 or calculate and
store any parity blocks as RAID4/5/6 do. Hence, it
does not need metadata volumes to keep state about
resynchronization progress of mirrored or parity
blocks. Metadata volumes become mandatory on a
conversion from RAIDO to RAID4/5/6/10, however,
and specifying raid0_meta preallocates those
metadata volumes to prevent a respective allocation
failure.

--stripes Stripes Specifies the number of devices to spread the logical
volume across.

--stripesize StripeSize Specifies the size of each stripe in kilobytes. This is
the amount of data that is written to one device
before moving to the next device.

VolumeGrou, Specifies the volume group to use.
p

PhysicalVolumePath ... Specifies the devices to use. If this is not specified,
LVM will choose the number of devices specified by
the Stripes option, one for each stripe.

This example procedure creates an LVM RAIDO logical volume called mylv that stripes data across the
disks at /dev/sdal, /dev/sdb1, and /dev/sdc1.

1. Label the disks you will use in the volume group as LVM physical volumes with the pvcreate
command.

' WARNING
A This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sdal /dev/sdb1 /dev/sdc1
Physical volume "/dev/sda1" successfully created
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdc1" successfully created

2. Create the volume group myvg. The following command creates the volume group myvg.

36

CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES

vgcreate myvg /dev/sda1 /dev/sdb1 /dev/sdc1
Volume group "myvg" successfully created

You can use the vgs command to display the attributes of the new volume group.

#vgs
VG #PV #LV #SN Attr VSize VFree
myvg 3 0 O wz--n-51.45G 51.45G

Create a RAIDO logical volume from the volume group you have created. The following
command creates the RAIDO volume mylv from the volume group myvg. This example creates
a logical volume that is 2 gigabytes in size, with three stripes and a stripe size of 4 kilobytes.

Ivcreate --type raid0 -L 2G --stripes 3 --stripesize 4 -n mylv myvg
Rounding size 2.00 GiB (512 extents) up to stripe boundary size 2.00 GiB(513 extents).
Logical volume "mylv" created.

. Create a file system on the RAIDO logical volume. The following command creates an ext4 file
system on the logical volume.

mkfs.ext4 /dev/imyvg/mylv
mke2fs 1.44.3 (10-July-2018)
Creating filesystem with 525312 4k blocks and 131376 inodes
Filesystem UUID: 9d4c0704-6028-450a-8b0a-8875358c0511
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

The following commands mount the logical volume and report the file system disk space usage.

mount /dev/myvg/mylv /mnt

df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/myvg-mylv 2002684 6168 1875072 1% /mnt

4.4. RENAMING LVM LOGICAL VOLUMES

This procedure renames an existing logical volume using the command-line LVM interface.

Procedure

1.

2.

If the logical volume is currently mounted, unmount the volume.

If the logical volume exists in a clustered environment, deactivate the logical volume on all
nodes where it is active. Use the following command on each such node:

I [root@node-n]# Ivchange --activate n vg-name/lv-name

Use the lvrename utility to rename an existing logical volume:

37

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

I # Ivrename vg-name original-lv-name new-lv-name

Optionally, you can specify the full paths to the devices:

I # Ivrename /dev/vg-name/original-lv-name /dev/vg-name/new-Ilv-name

Additional resources

® The Ivrename(8) man page

4.5. REMOVING A DISK FROM A LOGICAL VOLUME

These example procedures show how you can remove a disk from an existing logical volume, either to
replace the disk or to use the disk as part of a different volume. In order to remove a disk, you must first
move the extents on the LVM physical volume to a different disk or set of disks.

4.5.1. Moving extents to existing physical volumes

In this example, the logical volume is distributed across four physical volumes in the volume group myvg.

pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal myvglvm2 a- 17.15G 12.15G 5.00G
/dev/sdb1 myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdd1 myvglvm2 a- 17.15G 2.15G 15.00G

This examples moves the extents off of /dev/sdb1 so that it can be removed from the volume group.

1. If there are enough free extents on the other physical volumes in the volume group, you can
execute the pvmove command on the device you want to remove with no other options and the
extents will be distributed to the other devices.

In a cluster, the pvmove command can move only logical volume that are active exclusively on a
single node.

pvmove /dev/sdb1
/dev/sdb1: Moved: 2.0%

/dev/sdb1: Moved: 79.2%
/dev/sdb1: Moved: 100.0%

After the pvmove command has finished executing, the distribution of extents is as follows:

pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal myvglvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvglvm2 a- 17.15G 17.15G 0
/dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdd1 myvglvm2 a- 17.15G 2.15G 15.00G

2. Use the vgreduce command to remove the physical volume /dev/sdb1 from the volume group.

38

CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES

vgreduce myvg /dev/sdb1
Removed "/dev/sdb1" from volume group "myvg"
pvs
PV VG Fmt Attr PSize PFree
/dev/sdal myvglvm2 a- 17.15G 7.15G
/dev/sdb1 lvm2 -- 17.15G 17.15G
/dev/sdc1 myvg lvm2 a- 17.15G 12.15G
/dev/sdd1 myvg lvm2 a- 17.15G 2.15G

The disk can now be physically removed or allocated to other users.

4.5.2. Moving Extents to a New Disk

In this example, the logical volume is distributed across three physical volumes in the volume group
myvg as follows:

pvs -o+pv_used

PV VG Fmt Attr PSize PFree Used
/dev/sdal myvglvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G

This example procedure moves the extents of /dev/sdb1 to a new device, /dev/sdd1.

1. Create a new physical volume from /dev/sdd1.

pvcreate /dev/sdd1
Physical volume "/dev/sdd1" successfully created

2. Add the new physical volume /dev/sdd1 to the existing volume group myvg.

vgextend myvg /dev/sdd1
Volume group "myvg" successfully extended

pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal myvglvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdd1 myvglvm2 a- 17.15G 17.15G 0

3. Use the pvmove command to move the data from /dev/sdb1 to /dev/sdd1.

pvmove /dev/sdb1 /dev/sdd1
/dev/sdb1: Moved: 10.0%

/dev/sdb1: Moved: 79.7%
/dev/sdb1: Moved: 100.0%
pvs -o+pv_used

PV VG Fmt Attr PSize PFree Used
/dev/sdal myvglvm2 a- 17.15G 7.15G 10.00G

39

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

/dev/sdb1 myvglvm2 a- 17.15G 17.15G 0
/dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdd1 myvg lvm2 a- 17.15G 15.15G 2.00G

4. After you have moved the data off /dev/sdb1, you can remove it from the volume group.

vgreduce myvg /dev/sdb1
Removed "/dev/sdb1" from volume group "myvg"

You can now reallocate the disk to another volume group or remove the disk from the system.

4.6. CONFIGURING PERSISTENT DEVICE NUMBERS
Major and minor device numbers are allocated dynamically at module load. Some applications work best

if the block device is always activated with the same device (major and minor) number. You can specify
these with the Ivcreate and the lvehange commands by using the following arguments:

I --persistent y --major major --minor minor

Use a large minor number to be sure that it has not already been allocated to another device
dynamically.

If you are exporting a file system using NFS, specifying the fsid parameter in the exports file may avoid
the need to set a persistent device number within LVM.

4.7.SPECIFYING LVM EXTENT SIZE

When physical volumes are used to create a volume group, its disk space is divided into 4MB extents, by
default. This extent is the minimum amount by which the logical volume may be increased or decreased
in size. Large numbers of extents will have no impact on |/O performance of the logical volume.

You can specify the extent size with the -s option to the vgcreate command if the default extent size is

not suitable. You can put limits on the number of physical or logical volumes the volume group can have
by using the -p and -l arguments of the vgcreate command.

4.8. MANAGING LVM LOGICAL VOLUMES USING RHEL SYSTEM
ROLES

This section describes how to apply the storage role to perform the following tasks:
® Create an LVM logical volume in a volume group consisting of multiple disks.
® Create an ext4 file system with a given label on the logical volume.

® Persistently mount the ext4 file system.

Prerequisites

® An Ansible playbook including the storage role

For information on how to apply an Ansible playbook, see Applying a role.
4.8.1. Example Ansible playbook to manage logical volumes

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#applying-a-role_con_intro-to-rhel-system-roles

CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES

This section provides an example Ansible playbook. This playbook applies the storage role to create an
LVM logical volume in a volume group.

Example 4.1. A playbook that creates a mylv logical volume in the myvg volume group

- hosts: all
vars:
storage_pools:
- name: myvg
disks:
- sdb

- sda
- sdc
volumes:
- name: mylv
size: 2G
fs_type: ext4
mount_point: /mnt

roles:
- rhel-system-roles.storage

® The myvg volume group consists of the following disks:
o /dev/sda
o /dev/sdb
o /dev/sdc

® |f the myvg volume group already exists, the playbook adds the logical volume to the volume
group.

e |f the myvg volume group does not exist, the playbook creates it.

® The playbook creates an Ext4 file system on the mylv logical volume, and persistently
mounts the file system at /mnt.

Additional resources

e The /ust/share/ansible/roles/rhel-system-roles.storage/README.md file.

4.8.2. Additional resources

® For more information about the storage role, see Managing local storage using RHEL System
Roles.

4.9. REMOVING LVM LOGICAL VOLUMES

This procedure removes an existing logical volume using the command-line LVM interface.

The following commands remove the logical volume /dev/vg-name/lv-name from the volume group vg-
name.

41

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-local-storage-using-rhel-system-roles_configuring-and-managing-logical-volumes

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Procedure

1. If the logical volume is currently mounted, unmount the volume.

2. If the logical volume exists in a clustered environment, deactivate the logical volume on all
nodes where it is active. Use the following command on each such node:

I [root@node-n]# Ivchange --activate n vg-name/lv-name

3. Remove the logical volume using the Ivremove utility:

lvremove /dev/vg-namel/lv-name
Do you really want to remove active logical volume "lv-name"? [y/n]: y
Logical volume "lv-name" successfully removed

NOTE
In this case, the logical volume has not been deactivated. If you explicitly

deactivated the logical volume before removing it, you would not see the prompt
verifying whether you want to remove an active logical volume.

Additional resources

® The Ivremove(8) man page

42

CHAPTER 5. MODIFYING THE SIZE OF A LOGICAL VOLUME

CHAPTER 5. MODIFYING THE SIZE OF A LOGICAL VOLUME

After you have created a logical volume, you can modify the size of the volume.

5.1. GROWING LOGICAL VOLUMES
To increase the size of a logical volume, use the Ivextend command.

When you extend the logical volume, you can indicate how much you want to extend the volume, or how
large you want it to be after you extend it.

The following command extends the logical volume /dev/myvg/homevol to 12 gigabytes.

lvextend -L12G /dev/imyvg/homevol

Ivextend -- extending logical volume "/dev/myvg/homevol" to 12 GB
Ivextend -- doing automatic backup of volume group "myvg"

Ivextend -- logical volume "/dev/myvg/homevol" successfully extended

The following command adds another gigabyte to the logical volume /dev/imyvg/homevol.

Ivextend -L+1G /dev/myvg/homevol

Ivextend -- extending logical volume "/dev/myvg/homevol" to 13 GB
Ivextend -- doing automatic backup of volume group "myvg"

Ivextend -- logical volume "/dev/myvg/homevol" successfully extended

As with the Ivereate command, you can use the -l argument of the Ivextend command to specify the
number of extents by which to increase the size of the logical volume. You can also use this argument to
specify a percentage of the volume group, or a percentage of the remaining free space in the volume
group. The following command extends the logical volume called testlv to fill all of the unallocated
space in the volume group myvg.

Ivextend -1 +100%FREE /dev/myvg/testiv
Extending logical volume testlv to 68.59 GB
Logical volume testlv successfully resized

After you have extended the logical volume it is necessary to increase the file system size to match.
By default, most file system resizing tools will increase the size of the file system to be the size of the

underlying logical volume so you do not need to worry about specifying the same size for each of the
two commands.

5.2. GROWING A FILE SYSTEM ON A LOGICAL VOLUME
To grow a file system on a logical volume, perform the following steps:

1. Determine whether there is sufficient unallocated space in the existing volume group to extend
the logical volume. If not, perform the following procedure:

a. Create a new physical volume with the pvcreate command.

b. Use the vgextend command to extend the volume group that contains the logical volume
with the file system you are growing to include the new physical volume.

43

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

2. Once the volume group is large enough to include the larger file system, extend the logical
volume with the Ivresize command.

3. Resize the file system on the logical volume.

Note that you can use the -r option of the Ivresize command to extend the logical volume and resize
the underlying file system with a single command

5.3. SHRINKING LOGICAL VOLUMES

You can reduce the size of a logical volume with the Ivreduce command.

NOTE

Shrinking is not supported on a GFS2 or XFS file system, so you cannot reduce the size of
a logical volume that contains a GFS2 or XFS file system.

If the logical volume you are reducing contains a file system, to prevent data loss you must ensure that
the file system is not using the space in the logical volume that is being reduced. For this reason, it is
recommended that you use the --resizefs option of the Ivreduce command when the logical volume
contains a file system. When you use this option, the Ivreduce command attempts to reduce the file
system before shrinking the logical volume. If shrinking the file system fails, as can occur if the file
system is full or the file system does not support shrinking, then the Ivreduce command will fail and not
attempt to shrink the logical volume.

' WARNING
A In most cases, the lvreduce command warns about possible data loss and asks for a

confirmation. However, you should not rely on these confirmation prompts to
prevent data loss because in some cases you will not see these prompts, such as
when the logical volume is inactive or the --resizefs option is not used.

Note that using the --test option of the Ivreduce command does not indicate where
the operation is safe, as this option does not check the file system or test the file
system resize.

The following command shrinks the logical volume Ivol1 in volume group vg00 to be 64 megabytes. In
this example, Ivol1 contains a file system, which this command resizes together with the logical volume.
This example shows the output to the command.

lvreduce --resizefs -L 64M vg00/lvol1

fsck from util-linux 2.23.2

/dev/mapper/vg00-Ivol1: clean, 11/25688 files, 8896/102400 blocks
resize2fs 1.42.9 (28-Dec-2013)

Resizing the filesystem on /dev/mapper/vg00-Ivol1 to 65536 (1k) blocks.
The filesystem on /dev/mapper/vg00-Ivol1 is now 65536 blocks long.

Size of logical volume vg00/Ivol1 changed from 100.00 MiB (25 extents) to 64.00 MiB (16 extents).
Logical volume vg00/Ivol1 successfully resized.

44

CHAPTER 5. MODIFYING THE SIZE OF A LOGICAL VOLUME

Specifying the - sign before the resize value indicates that the value will be subtracted from the logical
volume's actual size. The following example shows the command you would use if, instead of shrinking a
logical volume to an absolute size of 64 megabytes, you wanted to shrink the volume by a value 64
megabytes.

I # Ivreduce --resizefs -L -64M vg00/Ivol1

5.4. EXTENDING A STRIPED LOGICAL VOLUME

In order to increase the size of a striped logical volume, there must be enough free space on the
underlying physical volumes that make up the volume group to support the stripe. For example, if you
have a two-way stripe that that uses up an entire volume group, adding a single physical volume to the
volume group will not enable you to extend the stripe. Instead, you must add at least two physical
volumes to the volume group.

For example, consider a volume group vg that consists of two underlying physical volumes, as displayed
with the following vgs command.

#vgs
VG #PV #LV #SN Attr VSize VFree
vg 2 0 Owz--n-271.31G 271.31G

You can create a stripe using the entire amount of space in the volume group.

Ivcreate -n stripe1 -L 271.31G -i 2 vg
Using default stripesize 64.00 KB
Rounding up size to full physical extent 271.31 GB
Logical volume "stripe1" created
#Ivs -a -0 +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe1 vg -wi-a- 271.31G /dev/sdai(0),/dev/sdb1(0)

Note that the volume group now has no more free space.

#vgs
VG #PV #LV #SN Attr VSize VFree
vg 2 1 0wz--n-271.31G 0

The following command adds another physical volume to the volume group, which then has 135
gigabytes of additional space.

vgextend vg /dev/sdc1
Volume group "vg" successfully extended
#vgs
VG #PV #LV #SN Attr VSize VFree
vg 3 1 0wz--n-406.97G 135.66G

At this point you cannot extend the striped logical volume to the full size of the volume group, because
two underlying devices are needed in order to stripe the data.

lvextend vg/stripe1 -L 406G
Using stripesize of last segment 64.00 KB
Extending logical volume stripe1 to 406.00 GB

45

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Insufficient suitable allocatable extents for logical volume stripe1: 34480
more required

To extend the striped logical volume, add another physical volume and then extend the logical volume.
In this example, having added two physical volumes to the volume group we can extend the logical
volume to the full size of the volume group.

vgextend vg /dev/sdd1
Volume group "vg" successfully extended
#vgs
VG #PV #LV #SN Attr VSize VFree
vg 4 1 0wz--n-542.62G 271.31G
lvextend vg/stripe1 -L 542G
Using stripesize of last segment 64.00 KB
Extending logical volume stripe1 to 542.00 GB
Logical volume stripe1 successfully resized

If you do not have enough underlying physical devices to extend the striped logical volume, it is possible
to extend the volume anyway if it does not matter that the extension is not striped, which may result in
uneven performance. When adding space to the logical volume, the default operation is to use the same
striping parameters of the last segment of the existing logical volume, but you can override those
parameters. The following example extends the existing striped logical volume to use the remaining free
space after the initial lIvextend command fails.

lvextend vg/stripe1 -L 406G

Using stripesize of last segment 64.00 KB

Extending logical volume stripe1 to 406.00 GB

Insufficient suitable allocatable extents for logical volume stripe1: 34480
more required
Ivextend -i1 -1+100%FREE vg/stripe1

46

CHAPTER 6. MANAGING LVM VOLUME GROUPS

CHAPTER 6. MANAGING LVM VOLUME GROUPS

This section describes the commands that perform the various aspects of volume group administration.

6.1. VOLUME GROUPS

Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out of which
logical volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size called
extents. An extent is the smallest unit of space that can be allocated. Within a physical volume, extents
are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent size
is thus the same for all logical volumes in the volume group. The volume group maps the logical extents
to physical extents.

6.2. DISPLAYING VOLUME GROUPS

There are two commands you can use to display properties of LVM volume groups: vgs and vgdisplay.
The vgscan command, which scans all supported LVM block devices in the system for volume groups,
can also be used to display the existing volume groups.

The vgs command provides volume group information in a configurable form, displaying one line per
volume group. The vgs command provides a great deal of format control, and is useful for scripting.

The vgdisplay command displays volume group properties (such as size, extents, number of physical
volumes, and so on) in a fixed form. The following example shows the output of the vgdisplay

command for the volume group new_vg. If you do not specify a volume group, all existing volume groups
are displayed.

vgdisplay new_vg
--- Volume group ---

VG Name new_vg
System ID
Format lvm2

Metadata Areas 3
Metadata Sequence No 11

VG Access read/write
VG Status resizable
MAX LV 0

Cur LV 1

Open LV 0

Max PV 0

Cur PV 3

Act PV 3

VG Size 51.42 GB
PE Size 4.00 MB
Total PE 13164

Alloc PE / Size 13/52.00 MB
Free PE / Size 13151/51.37 GB
VG UUID xQJ0a-ZKk0-OpMO-0118-nlwO-wwqd-fD5D32

The following example shows the output of the vgsecan command.

47

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

vgscan

Reading all physical volumes. This may take a while...
Found volume group "new_vg" using metadata type lvm2
Found volume group "officevg" using metadata type lvm2

6.3. COMBINING VOLUME GROUPS

To combine two volume groups into a single volume group, use the vgmerge command. You can merge
an inactive "source" volume with an active or an inactive "destination” volume if the physical extent sizes
of the volume are equal and the physical and logical volume summaries of both volume groups fit into
the destination volume groups limits.

The following command merges the inactive volume group my_vg into the active or inactive volume
group databases giving verbose runtime information.

I # vgmerge -v databases my_vg

6.4. SPLITTING A VOLUME GROUP

In this example procedure, an existing volume group consists of three physical volumes. If there is
enough unused space on the physical volumes, a new volume group can be created without adding new
disks.

In the initial set up, the logical volume mylv is carved from the volume group myvg, which in turn
consists of the three physical volumes, /dev/sda1, /dev/sdb1, and /dev/sdc1.

After completing this procedure, the volume group myvg will consist of /dev/sda1 and /dev/sdb1. A
second volume group, yourvg, will consist of /dev/sdc1.

1. Use the pvscan command to determine how much free space is currently available in the
volume group.

pvscan
PV /dev/sdal VG myvg Ivm2[17.15GB/0 free]
PV /dev/sdb1 VG myvg Ivm2[17.15 GB/12.15 GB free]
PV /dev/sdc1 VG myvg Ivm2[17.15 GB/ 15.80 GB free]
Total: 3[51.45 GB]/inuse: 3[51.45GB]/inno VG: 0 [0]

2. Move all the used physical extents in /dev/sdc1 to /dev/sdb1 with the pvmove command. The
pvmove command can take a long time to execute.
In a cluster, the pvmove command can move only logical volume that are active exclusively on a
single node.

pvmove /dev/sdc1 /dev/sdb1
/dev/sdc1: Moved: 14.7%
/dev/sdc1: Moved: 30.3%
/dev/sdc1: Moved: 45.7%
/dev/sdc1: Moved: 61.0%
/dev/sdc1: Moved: 76.6%
/dev/sdc1: Moved: 92.2%
/dev/sdc1: Moved: 100.0%

After moving the data, you can see that all of the space on /dev/sdc1 is free.

48

CHAPTER 6. MANAGING LVM VOLUME GROUPS

pvscan
PV /dev/sdal VG myvg Ilvm2[17.15GB/0 free]
PV /dev/sdb1 VG myvg Ivm2[17.15 GB/ 10.80 GB free]
PV /dev/sdc1 VG myvg Ivm2[17.15 GB/17.15 GB free]
Total: 3[51.45 GB]/inuse: 3[51.45GB]/inno VG:0[0]

3. To create the new volume group yourvg, use the vgsplit command to split the volume group
myvg.
The following command splits the volume group yourvg from the volume group myvg, moving
the physical volume /dev/sdc1 into the new volume group yourvg.

Ivchange -a n /dev/myvg/mylv
vgsplit myvg yourvg /dev/sdc1
Volume group "yourvg" successfully split from "myvg"

You can use the vgs command to see the attributes of the two volume groups.

#vgs
VG #PV #LV #SN Attr VSize VFree
myvg 2 1 0wz--n-34.30G 10.80G
yourvg 1 0 Owz--n-17.15G 17.15G

4. After creating the new volume group, create the new logical volume yourlv.

Ivcreate -L 5G -n yourlv yourvg
Logical volume "yourlv" created

5. Create a file system on the new logical volume and mount it.

mkfs.ext4 /dev/yourvg/yourlv
mke2fs 1.44.3 (10-July-2018)
Creating filesystem with 524288 4k blocks and 131072 inodes
Filesystem UUID: 616da032-8a48-4cd7-8705-bd94b7a1c8c4
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

mount /dev/yourvg/yourlv /mnt

6.5. RENAMING LVM VOLUME GROUPS

This procedure renames an existing volume group using the command-line LVM interface.

Procedure

1. If the volume group exists in a clustered environment, deactivate the volume group on all nodes
where it is active. Use the following command on each such node:

I [root@node-nl# vgchange --activate n vg-name

49

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

2.

Use the vgrename utility to rename an existing volume group:

I # vgrename original-vg-name new-vg-name

Optionally, you can specify the full paths to the devices:

I # vgrename /dev/original-vg-name /dev/new-vg-name

Additional resources

® The vgrename(8) man page

6.6. MOVING A VOLUME GROUP TO ANOTHER SYSTEM

You can move an entire LVM volume group to another system. It is recommended that you use the
vgexport and vgimport commands when you do this.

NOTE

You can use the --force argument of the vgimport command. This allows you to import
volume groups that are missing physical volumes and subsequently run the vgreduce --
removemissing command.

The vgexport command makes an inactive volume group inaccessible to the system, which allows you to
detach its physical volumes. The vgimport command makes a volume group accessible to a machine
again after the vgexport command has made it inactive.

To move a volume group from one system to another, perform the following steps:

1.

50

Make sure that no users are accessing files on the active volumes in the volume group, then
unmount the logical volumes.

Use the -a n argument of the vgchange command to mark the volume group as inactive, which
prevents any further activity on the volume group.

Use the vgexport command to export the volume group. This prevents it from being accessed
by the system from which you are removing it.

After you export the volume group, the physical volume will show up as being in an exported
volume group when you execute the pvscan command, as in the following example.

pvscan
PV /dev/sdal s in exported VG myvg [17.15 GB/7.15 GB free]
PV /dev/sdc1 s in exported VG myvg [17.15 GB / 15.15 GB freeg]
PV /dev/sdd1 is in exported VG myvg [17.15 GB / 15.15 GB free]

When the system is next shut down, you can unplug the disks that constitute the volume group
and connect them to the new system.

When the disks are plugged into the new system, use the vgimport command to import the
volume group, making it accessible to the new system.

CHAPTER 6. MANAGING LVM VOLUME GROU

5. Activate the volume group with the -a y argument of the vgchange command.

6. Mount the file system to make it available for use.

6.7. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP

To remove unused physical volumes from a volume group, use the vgreduce command. The vgreduce
command shrinks a volume group’s capacity by removing one or more empty physical volumes. This
frees those physical volumes to be used in different volume groups or to be removed from the system.

Before removing a physical volume from a volume group, you can make sure that the physical volume is
not used by any logical volumes by using the pvdisplay command.

pvdisplay /dev/hda1

-- Physical volume ---

PV Name /dev/hda1l

VG Name myvg

PV Size 1.95 GB / NOT usable 4 MB [LVM: 122 KB]
PV# 1

PV Status available

Allocatable yes (but full)

Cur LV 1

PE Size (KByte) 4096

Total PE 499

Free PE 0

Allocated PE 499

PV UUID Sd44tK-9IRw-SrMC-MOkn-76iP-iftz-OVSen7

If the physical volume is still being used you will have to migrate the data to another physical volume
using the pvmove command. Then use the vgreduce command to remove the physical volume.

The following command removes the physical volume /dev/hda1 from the volume group
my_volume_group.

I # vgreduce my_volume_group /dev/hda1

If a logical volume contains a physical volume that fails, you cannot use that logical volume. To remove
missing physical volumes from a volume group, you can use the --removemissing parameter of the
vgreduce command, if there are no logical volumes that are allocated on the missing physical volumes.

If the physical volume that fails contains a mirror image of a logical volume of a mirror segment type,

you can remove that image from the mirror with the vgreduce --removemissing --mirrorsonly --force
command. This removes only the logical volumes that are mirror images from the physical volume.

6.8. REMOVING LVM VOLUME GROUPS

This procedure removes an existing volume group using the command-line LVM interface.

Prerequisites

® The volume group contains no logical volumes. To remove logical volumes from a volume group,
see Section 4.9, "Removing LVM logical volumes”.

PS

51

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Procedure

1. If the volume group exists in a clustered environment, stop the lockspace of the volume group
on all other nodes. Use the following command on all nodes except the node where you are
performing the removing:

I [root@node-nl# vgchange --lockstop vg-name

Wait for the lock to stop.

2. Toremove the volume group, use the vgremove utility:

vgremove vg-name
Volume group "vg-name" successfully removed

Additional resources

® The vgremove(8) man page

6.9. ADDITIONAL RESOURCES

® The vgchange(8) man page

52

CHAPTER 7. MANAGING LVM PHYSICAL VOLUMES

CHAPTER 7. MANAGING LVM PHYSICAL VOLUMES

There are a variety of commands and procedures you can use to manage LVM physical volumes.

7.1. SCANNING FOR BLOCK DEVICES TO USE AS PHYSICAL VOLUMES

You can scan for block devices that may be used as physical volumes with the lvmdiskscan command,
as shown in the following example.

lvmdiskscan

/dev/ramO [16.00 MB]

/dev/sda [17.15 GB]

/dev/root [13.69 GB]

/dev/ram [16.00 MB]

/dev/sdat [17.14 GB] LVM physical volume
/dev/VolGroup00/LogVol01 [512.00 MB]

/dev/ram2 [16.00 MB]

/dev/new_vg/Ivol0 [52.00 MB]

/dev/ram3 [16.00 MB]
/dev/pkl_new_vg/sparkie_Iv [7.14 GB]

/dev/ram4 [16.00 MB]

/dev/ram5 [16.00 MB]

/dev/ram6 [16.00 MB]

/dev/ram7 [16.00 MB]

/dev/ram8 [16.00 MB]

/dev/ram9 [16.00 MB]

/dev/ram10 [16.00 MB]

/dev/ram11 [16.00 MB]

/dev/ram12 [16.00 MB]

/dev/ram13 [16.00 MB]

/dev/ram14 [16.00 MB]

/dev/ram15 [16.00 MB]

/dev/sdb [17.15 GB]

/dev/sdb1 [17.14 GB] LVM physical volume
/dev/sdc [17.15 GB]

/dev/sdc1 [17.14 GB] LVM physical volume
/dev/sdd [17.15 GB]

/dev/sdd1 [17.14 GB] LVM physical volume
7 disks

17 partitions
0 LVM physical volume whole disks
4 LVM physical volumes

7.2.SETTING THE PARTITION TYPE FOR A PHYSICAL VOLUME

If you are using a whole disk device for your physical volume, the disk must have no partition table. For
DOS disk partitions, the partition id should be set to Ox8e using the fdisk or cfdisk command or an
equivalent. For whole disk devices only the partition table must be erased, which will effectively destroy
all data on that disk. You can remove an existing partition table by zeroing the first sector with the
following command:

I # dd if=/dev/zero of=PhysicalVolume bs=512 count=1

53

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

7.3. RESIZING AN LVM PHYSICAL VOLUME

If you need to change the size of an underlying block device for any reason, use the pvresize command
to update LVM with the new size. You can execute this command while LVM is using the physical
volume.

7.4. REMOVING PHYSICAL VOLUMES

If a device is no longer required for use by LVM, you can remove the LVM label with the pvremove
command. Executing the pvremove command zeroes the LVM metadata on an empty physical volume.

If the physical volume you want to remove is currently part of a volume group, you must remove it from
the volume group with the vgreduce command.

pvremove /dev/ram15
Labels on physical volume "/dev/ram15" successfully wiped

7.5. ADDING PHYSICAL VOLUMES TO A VOLUME GROUP

To add additional physical volumes to an existing volume group, use the vgextend command. The
vgextend command increases a volume group’s capacity by adding one or more free physical volumes.

The following command adds the physical volume /dev/sdf1 to the volume group vg1.

I # vgextend vg1 /dev/sdf1

7.6. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP

To remove unused physical volumes from a volume group, use the vgreduce command. The vgreduce
command shrinks a volume group’s capacity by removing one or more empty physical volumes. This
frees those physical volumes to be used in different volume groups or to be removed from the system.

Before removing a physical volume from a volume group, you can make sure that the physical volume is
not used by any logical volumes by using the pvdisplay command.

pvdisplay /dev/hda1

-- Physical volume ---

PV Name /dev/hda1l

VG Name myvg

PV Size 1.95 GB / NOT usable 4 MB [LVM: 122 KB]
PV# 1

PV Status available

Allocatable yes (but full)

Cur LV 1

PE Size (KByte) 4096

Total PE 499

Free PE 0

Allocated PE 499

PV UUID Sd44tK-9IRw-SrMC-MOkn-76iP-iftz-OVSen7

If the physical volume is still being used you will have to migrate the data to another physical volume
using the pvmove command. Then use the vgreduce command to remove the physical volume.

54

CHAPTER 7. MANAGING LVM PHYSICAL VOLUMES

The following command removes the physical volume /dev/hda1 from the volume group
my_volume_group.

I # vgreduce my_volume_group /dev/hda1

If a logical volume contains a physical volume that fails, you cannot use that logical volume. To remove
missing physical volumes from a volume group, you can use the --removemissing parameter of the
vgreduce command, if there are no logical volumes that are allocated on the missing physical volumes.

If the physical volume that fails contains a mirror image of a logical volume of a mirror segment type,

you can remove that image from the mirror with the vgreduce --removemissing --mirrorsonly --force
command. This removes only the logical volumes that are mirror images from the physical volume.

55

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

CHAPTER 8. DISPLAYING LVM COMPONENTS

LVM provides a variety of ways to display the LVM components, as well as to customize the display. This
sections summarizes the usage of the basic LVM display commands.

8.1. DISPLAYING LVM INFORMATION WITH THE LVM COMMAND

The lvm command provides several built-in options that you can use to display information about LVM
support and configuration.

® |vm devtypes
Displays the recognized built-in block device types

e |vm formats
Displays recognized metadata formats.

® |vm help
Displays LVM help text.

e |vm segtypes
Displays recognized logical volume segment types.

® |vm tags
Displays any tags defined on this host.

® |vm version
Displays the current version information.

8.2. DISPLAYING PHYSICAL VOLUMES

There are three commands you can use to display properties of LVM physical volumes: pvs, pvdisplay,
and pvscan.

The pvs command provides physical volume information in a configurable form, displaying one line per
physical volume. The pvs command provides a great deal of format control, and is useful for scripting.

The pvdisplay command provides a verbose multi-line output for each physical volume. It displays
physical properties (size, extents, volume group, and so on) in a fixed format.

The following example shows the output of the pvdisplay command for a single physical volume.

pvdisplay
--- Physical volume ---
PV Name /dev/sdc1
VG Name new_vg
PV Size 17.14 GB / not usable 3.40 MB
Allocatable yes
PE Size (KByte) 4096
Total PE 4388
Free PE 4375
Allocated PE 13
PV UUID Joglch-yWSj-kuEn-ldwM-01S9-XO8M-mcpsVe

The pvscan command scans all supported LVM block devices in the system for physical volumes.

56

CHAPTER 8. DISPLAYING LVM COMPONENTS

The following command shows all physical devices found:

pvscan

PV /dev/sdb2 VG vg0 Ivm2[964.00 MB/0 free]

PV /dev/sdc1 VG vg0 Ivm2 [964.00 MB /428.00 MB free]

PV /dev/sdc2 lvm2 [964.84 MB]

Total: 3 [2.83 GB]/in use: 2 [1.88 GB]/in no VG: 1 [964.84 MB]

You can define a filter in the lvm.conf file so that this command will avoid scanning specific physical
volumes.

8.3. DISPLAYING VOLUME GROUPS

There are two commands you can use to display properties of LVM volume groups: vgs and vgdisplay.
The vgscan command, which scans all supported LVM block devices in the system for volume groups,
can also be used to display the existing volume groups.

The vgs command provides volume group information in a configurable form, displaying one line per
volume group. The vgs command provides a great deal of format control, and is useful for scripting.

The vgdisplay command displays volume group properties (such as size, extents, number of physical
volumes, and so on) in a fixed form. The following example shows the output of the vgdisplay

command for the volume group new_vg. If you do not specify a volume group, all existing volume groups
are displayed.

vgdisplay new_vg
--- Volume group ---

VG Name new_vg
System ID
Format lvm2

Metadata Areas 3
Metadata Sequence No 11

VG Access read/write
VG Status resizable
MAX LV 0

Cur LV 1

Open LV 0

Max PV 0

Cur PV 3

Act PV 3

VG Size 51.42 GB
PE Size 4.00 MB
Total PE 13164

Alloc PE / Size 13/52.00 MB
Free PE/ Size 13151/51.37 GB
VG UUID xQJ0a-ZKk0-OpMO-0118-nlwO-wwqd-fD5D32

The following example shows the output of the vgscan command.

vgscan

Reading all physical volumes. This may take a while...
Found volume group "new_vg" using metadata type lvm2
Found volume group "officevg" using metadata type lvm2

57

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

8.4. DISPLAYING LOGICAL VOLUMES

There are three commands you can use to display properties of LVM logical volumes: Ivs, Ivdisplay, and
Ivscan.

The lvs command provides logical volume information in a configurable form, displaying one line per
logical volume. The lvs command provides a great deal of format control, and is useful for scripting.

The Ivdisplay command displays logical volume properties (such as size, layout, and mapping) in a fixed
format.

The following command shows the attributes of Ivol2 in vg00. If snapshot logical volumes have been
created for this original logical volume, this command shows a list of all snapshot logical volumes and
their status (active or inactive) as well.

I # Ilvdisplay -v /dev/vg00/Ivol2

The lvscan command scans for all logical volumes in the system and lists them, as in the following
example.

lvscan
ACTIVE '/dev/vg0/gfsiv' [1.46 GB] inherit

58

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

LVM provides a wide range of configuration and command line options to produce customized reports
and to filter the report’s output. For a full description of LVM reporting features and capabilities, see the
lvmreport(7) man page.

You can produce concise and customizable reports of LVM objects with the pvs, Ivs, and vgs
commands. The reports that these commands generate include one line of output for each object. Each
line contains an ordered list of fields of properties related to the object. There are five ways to select the
objects to be reported: by physical volume, volume group, logical volume, physical volume segment, and
logical volume segment.

You can report information about physical volumes, volume groups, logical volumes, physical volume
segments, and logical volume segments all at once with the lvm fullreport command. For information
on this command and its capabilities, see the lvm-fullreport(8) man page.

LVM supports log reports, which contain a log of operations, messages, and per-object status with
complete object identification collected during LVM command execution. For further information about
the LVM log report. see the lvmreport(7) man page.

9.1. CONTROLLING THE FORMAT OF THE LVM DISPLAY

Whether you use the pvs, Ivs, or vgs command determines the default set of fields displayed and the
sort order. You can control the output of these commands with the following arguments:

® You can change what fields are displayed to something other than the default by using the -0
argument. For example, the following command displays only the physical volume name and
size.

pvs -0 pv_name,pv_size
PV PSize

/dev/sdb1 17.14G
/dev/sdc1 17.14G
/dev/sdd1 17.14G

® You can append a field to the output with the plus sign (+), which is used in combination with the
-0 argument.
The following example displays the UUID of the physical volume in addition to the default fields.

pvs -0 +pv_uuid

PV VG Fmt Attr PSize PFree PV UUID

/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6 XgA-dgGeXY
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G Joglch-yWSj-kuEn-ldwM-01S9-X08M-mcpsVe

/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-0RZ3-0dGW-UgkCS

® Adding the -v argument to a command includes some extra fields. For example, the pvs -v
command will display the DevSize and PV UUID fields in addition to the default fields.

pvs -v

Scanning for physical volume names

PV VG Fmt Attr PSize PFree DevSize PV UUID

/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6 XgA-
dgGeXY

/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G 17.14G Joqglch-yWSj-kuEn-ldwM-01S9-XO8M-

59

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

mcpsVe
/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-0RZ3-0dGW-
tUgkCS

e The --noheadings argument suppresses the headings line. This can be useful for writing scripts.
The following example uses the --noheadings argument in combination with the pv_name
argument, which will generate a list of all physical volumes.

pvs --noheadings -0 pv_name
/dev/sdb1
/dev/sdc1
/dev/sdd1

e The --separator separator argument uses separator to separate each field.
The following example separates the default output fields of the pvs command with an equals

sign (=).

pvs --separator =
PV=VG=Fmt=Attr=PSize=PFree
/dev/sdb1=new_vg=lvm2=a-=17.14G=17.14G
/dev/sdc1=new_vg=lvm2=a-=17.14G=17.09G
/dev/sdd1=new_vg=lvm2=a-=17.14G=17.14G

To keep the fields aligned when using the separator argument, use the separator argument in
conjunction with the --aligned argument.

pvs --separator = --aligned

PV =VG =Fmt =Attr=PSize =PFree

/dev/sdb1 =new_vg=lvm2=a- =17.14G=17.14G
/dev/sdc1 =new_vg=lvm2=a- =17.14G=17.09G
/dev/sdd1 =new_vg=lvm2=a- =17.14G=17.14G

You can use the -P argument of the Ivs or vgs command to display information about a failed volume
that would otherwise not appear in the output.

For a full listing of display arguments, see the pvs(8), vgs(8) and Ivs(8) man pages.

Volume group fields can be mixed with either physical volume (and physical volume segment) fields or
with logical volume (and logical volume segment) fields, but physical volume and logical volume fields
cannot be mixed. For example, the following command will display one line of output for each physical
volume.

vgs -0 +pv_name
VG #PV #LV #SN Attr VSize VFree PV
new_vg 3 1 0wz--n-51.42G 51.37G /dev/sdc1
new_vg 3 1 0wz--n-51.42G 51.37G /dev/sdd1
new_vg 3 1 0wz--n-51.42G 51.37G /dev/sdb1

9.2. LVM OBJECT DISPLAY FIELDS

This section provides a series of tables that list the information you can display about the LVM objects
with the pvs, vgs, and lvs commands.

60

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

For convenience, a field name prefix can be dropped if it matches the default for the command. For
example, with the pvs command, name means pv_name, but with the vgs command, name is
interpreted as vg_name.

Executing the following command is the equivalent of executing pvs -0 pv_free.

pvs -o free
PFree
17.14G
17.09G
17.14G

NOTE

The number of characters in the attribute fields in pvs, vgs, and Ivs output may increase
in later releases. The existing character fields will not change position, but new fields may
be added to the end. You should take this into account when writing scripts that search
for particular attribute characters, searching for the character based on its relative
position to the beginning of the field, but not for its relative position to the end of the
field. For example, to search for the character p in the ninth bit of the Iv_attr field, you
could search for the string "*/........ p/", but you should not search for the string "/*p$/".

Table 9.1, “The pvs Command Display Fields” lists the display arguments of the pvs command, along
with the field name as it appears in the header display and a description of the field.

Table 9.1. The pvs Command Display Fields

Argument Header Description

dev_size DevSize The size of the underlying device on which the physical
volume was created

pe_start Ist PE Offset to the start of the first physical extent in the
underlying device

pv_attr Attr Status of the physical volume: (a)llocatable or e(x)ported.
pv_fmt Fmt The metadata format of the physical volume (Ivm2 orlvm1)
pv_free PFree The free space remaining on the physical volume

pv_name PV The physical volume name

pv_pe_alloc_count Alloc Number of used physical extents

pv_pe_count PE Number of physical extents

pvseg_size SSize The segment size of the physical volume

pvseg_start Start The starting physical extent of the physical volume segment

61

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Argument Header Description

pv_size PSize The size of the physical volume

pv_tags PV Tags LVM tags attached to the physical volume

pv_used Used The amount of space currently used on the physical volume
pv_uuid PV UUID The UUID of the physical volume

The pvs command displays the following fields by default: pv_name, vg_name, pv_fmt, pv_attr,
pv_size, pv_free. The display is sorted by pv_name.

pvs

PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
/dev/sdc1 new_vglvm2 a- 17.14G 17.09G
/dev/sdd1 new_vg lvm2 a- 17.14G 17.13G

Using the -v argument with the pvs command adds the following fields to the default display: dev_size,
pv_uuid.

pvs -v
Scanning for physical volume names
PV VG Fmt Attr PSize PFree DevSize PV UUID
/dev/sdb1 new_vglvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6XqA-
dgGeXY
/dev/sdc1 new_vglvm2 a- 17.14G 17.09G 17.14G Joqlch-yWSj-kuEn-ldwM-01S9-XO8M-mcpsVe
/dev/sdd1 new_vglvm2 a- 17.14G 17.13G 17.14G yvivZK-Cf31-j75k-dECm-0RZ3-0dGW-tUgkCS

You can use the --segments argument of the pvs command to display information about each physical
volume segment. A segment is a group of extents. A segment view can be useful if you want to see
whether your logical volume is fragmented.

The pvs --segments command displays the following fields by default: pv_name, vg_name, pv_fmt,
pv_attr, pv_size, pv_free, pvseg_start, pvseg_size. The display is sorted by pv_name and pvseg_size
within the physical volume.

pvs --segments

PV VG Fmt Attr PSize PFree Start SSize
/dev/hda2 VolGroup00 Ivm2 a- 37.16G 32.00M 0 1172
/dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1172 16
/dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1188 1
/dev/sdal vg lvm2 a- 17.14G16.75G 0 26
/dev/sdal vg lvm2 a- 17.14G 16.75G 26 24
/dev/sdal vg lvm2 a- 17.14G 16.75G 50 26
/dev/sdal vg lvm2 a- 17.14G 16.75G 76 24
/dev/sdal vg lvm2 a- 17.14G 16.75G 100 26
/dev/sdal vg lvm2 a- 17.14G 16.75G 126 24
/dev/sdal vg lvm2 a- 17.14G 16.75G 150 22
/dev/sdal vg lvm2 a- 17.14G 16.75G 172 4217
/dev/sdb1 vg lvm2 a- 17.14G 17.14G 0 4389

62

/dev/sdc1 vg
/dev/sdd1 vg
/dev/sdel vg
/dev/sdf1 vg
/dev/sdg1 vg

lvm2 a-
lvm2 a-
lvm2 a-
lvm2 a-
lvm2 a-

17.14G 17.14G
17.14G 17.14G
17.14G 17.14G
17.14G 17.14G
17.14G 17.14G

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

0 4389
0 4389
0 4389
0 4389
0 4389

You can use the pvs -a command to see devices detected by LVM that have not been initialized as LVM
physical volumes.

pvs -a

PV VG Fmt Attr PSize PFree
/dev/VolGroup00/LogVol01 - 0 O
/dev/new_vg/Ivol0 - 0 O
/dev/ram -- 0
/dev/ram0 --
/dev/ram2 --
/dev/ram3 --
/dev/ram4 --
/dev/ramb --
/dev/ram6 --
/dev/root -- 0
/dev/sda -- 0
/dev/sdb -- 0
/dev/sdb1 new_vglvm2 a- 17.14G 17.14G
/dev/sdc -- 0O O

/dev/sdc1 new_vglvm2 a- 17.14G 17.09G
/dev/sdd -- 0O O

/dev/sdd1 new_vglvm2 a- 17.14G 17.14G

O OO OoOOoOo

Table 9.2, “vgs Display Fields” lists the display arguments of the vgs command, along with the field
name as it appears in the header display and a description of the field.

Table 9.2. vgs Display Fields

Argument Header Description

Iv_count #LV The number of logical volumes the volume group contains

max_Iv MaxLV The maximum number of logical volumes allowed in the
volume group (O if unlimited)

max_pv MaxPV The maximum number of physical volumes allowed in the
volume group (O if unlimited)

pv_count #PV The number of physical volumes that define the volume
group

shap_count #SN The number of snapshots the volume group contains

vg_attr Attr Status of the volume group: (w)riteable, (r)eadonly,

resi(z)eable, e(x)ported, (p)artial and (c)lustered.

63

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Argument Header Description

vg_extent_count #Ext The number of physical extents in the volume group
vg_extent_size Ext The size of the physical extents in the volume group
vg_fmt Fmt The metadata format of the volume group (Ivm2 orlvm1)
vg_free VFree Size of the free space remaining in the volume group
vg_free_count Free Number of free physical extents in the volume group
vg_hame VG The volume group name

vg_seqno Seq Number representing the revision of the volume group
vg_size VSize The size of the volume group

vg_sysid SYSID LVM1 System ID

vg_tags VG Tags LVM tags attached to the volume group

vg_uuid VG UUID The UUID of the volume group

The vgs command displays the following fields by default: vg_name, pv_count, lv_count, shap_count,
vg_attr, vg_size, vg_free. The display is sorted by vg_name.

#vgs
VG #PV #LV #SN Attr VSize VFree
new_vg 3 1 1wz--n-51.42G 51.36G

Using the -v argument with the vgs command adds the following fields to the default display:
vg_extent_size, vg_uuid.

#vgs -v
Finding all volume groups
Finding volume group "new_vg"
VG Attr Ext #PV #LV #SN VSize VFree VG UUID
new_vg wz--n-4.00M 3 1 151.42G 51.36G jxQJ0a-ZKk0-OpMO-0118-nlwO-wwqd-fD5D32

Table 9.3, “Ivs Display Fields” lists the display arguments of the Ivs command, along with the field name
as it appears in the header display and a description of the field.

NOTE
In later releases of Red Hat Enterprise Linux, the output of the lvs command may differ,

with additional fields in the output. The order of the fields, however, will remain the same
and any additional fields will appear at the end of the display.

64

Table 9.3. Ivs Display Fields

Argument

Header

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

Description

* chunksize

* chunk_size

copy_percent

devices

Iv_ancestors

Iv_descendants

Ilv_attr

Chunk

Copy%

Devices

Ancestors

Descendant
s

Attr

Unit size in a snapshot volume

The synchronization percentage of a mirrored logical volume;
also used when physical extents are being moved with the
pv_move command

The underlying devices that make up the logical volume: the
physical volumes, logical volumes, and start physical extents
and logical extents

For thin pool snapshots, the ancestors of the logical volume

For thin pool snapshots, the descendants of the logical
volume

The status of the logical volume. The logical volume attribute
bits are as follows:

* Bit 1: Volume type: (m)irrored, (M)irrored without initial
sync, (o)rigin, (O)rigin with merging snapshot, (r)aid, ®aid
without initial sync, (s)napshot, merging (S)napshot,
(p)vmove, (v)irtual, mirror or raid (i)mage, mirror or raid
(I)mage out-of-sync, mirror (I)og device, under (c)onversion,
thin (V)olume, (t)hin pool, (T)hin pool data, raid or thin pool
m(e)tadata or pool metadata spare,

* Bit 2: Permissions: (w)riteable, (r)ead-only, ®ead-only
activation of non-read-only volume

* Bit 3: Allocation policy: (a)nywhere, (c)ontiguous,
(i)nherited, c(l)ing, (n)ormal. This is capitalized if the volume
is currently locked against allocation changes, for example
while executing the pvmove command.

* Bit 4: fixed (m)inor

* Bit 5: State: (a)ctive, (s)uspended, (I)nvalid snapshot,
invalid (S)uspended snapshot, snapshot (m)erge failed,
suspended snapshot (M)erge failed, mapped (d)evice
present without tables, mapped device present with
(i)nactive table

* Bit 6: device (0)pen

* Bit 7: Target type: (m)irror, (r)aid, (s)napshot, (t)hin,
(u)nknown, (v)irtual. This groups logical volumes related to
the same kernel target together. So, for example, mirror
images, mirror logs as well as mirrors themselves appear as
(m) if they use the original device-mapper mirror kernel

65

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Iv_kernel_major

Iv_kernel_minor

Iv_major

Iv_minor

Iv_name

Ilv_size

Ilv_tags

Iv_uuid

mirror_log

modules

66

KMaj

KMIN

Maj

Min

LV

LSize

LV Tags

LV UUID

Log

Modules

Description

mapper driver appear as (s), whereas snapshots of thin
volumes using the thin provisioning driver appear as (t).

* Bit 8: Newly-allocated data blocks are overwritten with
blocks of (z)eroes before use.

* Bit 9: Volume Health: (p)artial, (r)efresh needed,
(m)ismatches exist, (w)ritemostly. (p)artial signifies that one
or more of the Physical Volumes this Logical Volume uses is
missing from the system. (r)efresh signifies that one or more
of the Physical Volumes this RAID Logical Volume uses had
suffered a write error. The write error could be due to a
temporary failure of that Physical Volume or an indication
that it is failing. The device should be refreshed or replaced.
(m)ismatches signifies that the RAID logical volume has
portions of the array that are not coherent. Inconsistencies
are discovered by initiating a check operation on a RAID
logical volume. (The scrubbing operations, check and
repair, can be performed on a RAID Logical Volume by
means of the Ivchange command.) (w)ritemostly signifies
the devices in a RAID 1logical volume that have been marked
write-mostly.

* Bit 10: s(k)ip activation: this volume is flagged to be skipped
during activation.

Actual major device number of the logical volume (-1if
inactive)

Actual minor device number of the logical volume (-1if
inactive)

The persistent major device number of the logical volume (-1
if not specified)

The persistent minor device number of the logical volume (-1
if not specified)

The name of the logical volume

The size of the logical volume

LVM tags attached to the logical volume

The UUID of the logical volume.

Device on which the mirror log resides

Corresponding kernel device-mapper target necessary to
use this logical volume

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

Argument Header Description

move_pv Move Source physical volume of a temporary logical volume
created with the pvmove command

origin Origin The origin device of a snapshot volume

* regionsize Region The unit size of a mirrored logical volume

* region_size

seg_count #Seg The number of segments in the logical volume

seg_size SSize The size of the segments in the logical volume

seg_start Start Offset of the segment in the logical volume

seg_tags Seg Tags LVM tags attached to the segments of the logical volume
segtype Type The segment type of a logical volume (for example: mirror,

striped, linear)

shap_percent Snap% Current percentage of a snapshot volume that is in use
stripes #Str Number of stripes or mirrors in a logical volume

* stripesize Stripe Unit size of the stripe in a striped logical volume

* stripe_size

The lvs command provides the following display by default. The default display is sorted by vg_name
and Iv_name within the volume group.

#lvs

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
origin VG owi-a-s--- 1.00g

snap VG swi-a-s--- 100.00m origin 0.00

A common use of the lvs command is to append devices to the command to display the underlying
devices that make up the logical volume. This example also specifies the -a option to display the internal
volumes that are components of the logical volumes, such as RAID mirrors, enclosed in brackets. This
example includes a RAID volume, a striped volume, and a thinly-pooled volume.

Ilvs -a -0 +devices

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
Devices

raid1 VG rwi-a-r--- 1.00g 100.00
raid1_rimage_0(0),raid1_rimage_1(0)

[raid1_rimage_0] VG iwi-aor--- 1.00g /dev/sde1(7041)

67

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

[raid1_rimage_1] VG
[raid1_rmeta_0] VG
[raid1_rmeta_1] VG

iwi-aor--- 1.00g
ewi-aor--- 4.00m
ewi-aor--- 4.00m

stripe1 VG -wi-a----- 99.95¢g

stripe1 VG -wi-a----- 99.95¢g

stripe1 VG -wi-a----- 99.95¢g

[lvol0_pmspare] rhel_host-083 ewi------- 4.00m

pool00 rhel_host-083 twi-aotz-- <4.79¢ 72.90 54.69
pool00_tdata(0)

[pool00_tdata] rhel_host-083 Twi-ao---- <4.79g

[pool00_tmeta] rhel_host-083 ewi-ao---- 4.00m

root rhel_host-083 Vwi-aotz-- <4.79g pool00 72.90

swap rhel_host-083 -wi-ao---- 820.00m

/dev/sdf1(7041)
/dev/sde1(7040)
/dev/sdf1(7040)

/dev/sde1(0),/dev/sdf1(0)

/dev/sdd1(0)

/dev/sdc1(0)
/dev/vda2(0)

/dev/vda2(1)
/dev/vda2(1226)

/dev/vda2(1227)

Using the -v argument with the Ivs command adds the following fields to the default display:

seg_count, lv_major, Ilv_minor, lv_kernel_major, Iv_kernel_minor, Iv_uuid.

#Ivs -v
Finding all logical volumes

LV VG #Seg Attr LSize Maj Min KMaj KMin Origin Snap% Move Copy% Log Convert LV

uuiD

lvol0 new_vg 1 owi-a- 52.00M -1 -1253 3
NHLC-y8XW-EhCI78

newvgsnapl new_vg 1 swi-a- 8.00M -1 -1253 5 Ivol0 0.20
079k-20h2-ZGF0-qCJm-Cfbslx

LBy1Tz-sr23-0jsl-LTO3-

1ye10U-1clu-

You can use the --segments argument of the lvs command to display information with default columns
that emphasize the segment information. When you use the segments argument, the seg prefix is
optional. The Ivs --segments command displays the following fields by default: lv_name, vg_name,
Iv_attr, stripes, segtype, seg_size. The default display is sorted by vg_name, Ilv_name within the
volume group, and seg_start within the logical volume. If the logical volumes were fragmented, the

output from this command would show that.

lvs --segments
LV VG Attr #Str Type SSize
LogVol00 VolGroupQ0 -wi-ao 1 linear 36.62G
LogVol01 VolGroup00 -wi-ao 1 linear 512.00M

lv vg -wi-a- 1 linear 104.00M
lv vg -wi-a- 1 linear 104.00M
lv vg -wi-a- 1 linear 104.00M

lv vg -wi-a- 1 linear 88.00M

Using the -v argument with the Ivs --segments command adds the following fields to the default

display: seg_start, stripesize, chunksize.

lvs -v --segments

Finding all logical volumes

LV VG Attr Start SSize #Str Type Stripe Chunk
lvol0 new_vgowi-a- 0 52.00M 1linear 0 O
newvgsnapl new_vg swi-a- 0 8.00M 1linear 0 8.00K

The following example shows the default output of the Ivs command on a system with one logical
volume configured, followed by the default output of the lvs command with the segments argument

specified.

68

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

#lvs
LV VG Attr LSize Origin Snap% Move Log Copy%
Ivol0 new_vg -wi-a- 52.00M
lvs --segments
LV VG Attr #Str Type SSize
Ivol0 new_vg -wi-a- 1 linear 52.00M

9.3. SORTING LVM REPORTS

Normally the entire output of the Ivs, vgs, or pvs command has to be generated and stored internally
before it can be sorted and columns aligned correctly. You can specify the --unbuffered argument to
display unsorted output as soon as it is generated.

To specify an alternative ordered list of columns to sort on, use the -O argument of any of the reporting
commands. It is not necessary to include these fields within the output itself.

The following example shows the output of the pvs command that displays the physical volume name,
size, and free space.

pvs -0 pv_name,pv_size,pv_free
PV PSize PFree

/dev/sdb1 17.14G 17.14G
/dev/sdc1 17.14G 17.09G
/dev/sdd1 17.14G 17.14G

The following example shows the same output, sorted by the free space field.

pvs -0 pv_name,pv_size,pv_free -O pv_free
PV PSize PFree
/dev/sdc1 17.14G 17.09G
/dev/sdd1 17.14G 17.14G
/dev/sdb1 17.14G 17.14G

The following example shows that you do not need to display the field on which you are sorting.

pvs -0 pv_name,pv_size -O pv_free
PV PSize
/dev/sdc1 17.14G
/dev/sdd1 17.14G
/dev/sdb1 17.14G

To display a reverse sort, precede a field you specify after the -O argument with the - character.

pvs -0 pv_name,pv_size,pv_free -O -pv_free
PV PSize PFree
/dev/sdd1 17.14G 17.14G
/dev/sdb1 17.14G 17.14G
/dev/sdc1 17.14G 17.09G

9.4. SPECIFYING THE UNITS FOR AN LVM REPORT DISPLAY

To specify the units for the LVM report display, use the --units argument of the report command. You
can specify (b)ytes, (k)ilobytes, (m)egabytes, (g)igabytes, (t)erabytes, (e)xabytes, (p)etabytes, and

69

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

(h)uman-readable. The default display is human-readable. You can override the default by setting the
units parameter in the global section of the /etc/lvm/lvm.conf file.

The following example specifies the output of the pvs command in megabytes rather than the default
gigabytes.

pvs --units m
PV VG Fmt Atir PSize PFree
/dev/sdal lvm2 -- 17555.40M 17555.40M
/dev/sdb1 new_vg lvm2 a- 17552.00M 17552.00M
/dev/sdc1 new_vg lvm2 a- 17552.00M 17500.00M
/dev/sdd1 new_vg lvm2 a- 17552.00M 17552.00M

By default, units are displayed in powers of 2 (multiples of 1024). You can specify that units be displayed
in multiples of 1000 by capitalizing the unit specification (B, K, M, G, T, H).

The following command displays the output as a multiple of 1024, the default behavior.

pvs

PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg Ilvm2 a- 17.14G 17.14G
/dev/sdc1 new_vglvm2 a- 17.14G 17.09G
/dev/sdd1 new_vg Ilvm2 a- 17.14G 17.14G

The following command displays the output as a multiple of 1000.

pvs --units G

PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vglvm2 a- 18.40G 18.40G
/dev/sdc1 new_vg lvm2 a- 18.40G 18.35G
/dev/sdd1 new_vglvm2 a- 18.40G 18.40G

You can also specify (s)ectors (defined as 512 bytes) or custom units.

The following example displays the output of the pvs command as a number of sectors.

pvs --units s
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 35946496S 35946496S
/dev/sdc1 new_vg lvm2 a- 35946496S 35840000S
/dev/sdd1 new_vg lvm2 a- 35946496S 35946496S

The following example displays the output of the pvs command in units of 4 MB.

pvs --units 4m
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 4388.00U 4388.00U
/dev/sdc1 new_vg lvm2 a- 4388.00U 4375.00U
/dev/sdd1 new_vg lvm2 a- 4388.00U 4388.00U

9.5. DISPLAYING LVM COMMAND OUTPUT IN JSON FORMAT

70

CHAPTER 9. CUSTOMIZED REPORTING FOR LVM

You can use the --reportformat option of the LVM display commands to display the output in JSSON
format.

The following example shows the output of the Ivs in standard default format.

#lvs
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
my_raid my_vg Rwi-a-r--- 12.00m 100.00

root rhel_host-075 -wi-ao---- 6.67g
swap rhel_host-075 -wi-ao---- 820.00m

The following command shows the output of the same LVM configuration when you specify JSON
format.

Ivs --reportformat json
{
"report": [
{
"IV [

{"lv_name":"my_raid", "vg_name":"my_vg", "lv_attr":"Rwi-a-r---", "lv_size":"12.00m",
"pool_Iv":"", "origin™:"", "data_percent":"", "metadata_percent":"", "move_pv":"", "mirror_log":"",
"copy_percent":"100.00", "convert_Iv":""},

{"lv_name":"root", "vg_name":"rhel_host-075", "lv_attr":"-wi-ao----", "Iv_size":"6.679",
"pool_Iv":"", "origin™:"", "data_percent":"", "metadata_percent":"", "move_pv":"", "mirror_log":"",
"copy_percent™:"", "convert_Iv":""},

{"lv_name":"swap", "vg_name":"rhel_host-075", "lv_attr":"-wi-ao----", "lv_size":"820.00m",
"pool_Iv":"", "origin™:"", "data_percent":"", "metadata_percent":"", "move_pv":"", "mirror_log":"",
"copy_percent™:"", "convert_Iv":""}

]
}
]
}

You can also set the report format as a configuration option in the /etc/lvm/lvm.conf file, using the
output_format setting. The --reportformat setting of the command line, however, takes precedence
over this setting.

9.6. DISPLAYING THE LVM COMMAND LOG

Both report-oriented and processing-oriented LVM commands can report the command log if this is
enabled with the log/report_command_log configuration setting. You can determine the set of fields
to display and to sort by for this report.

The following examples configures LVM to generate a complete log report for LVM commands. In this
example, you can see that both logical volumes Ivol0 and Ivol1 were successfully processed, as was the
volume group VG that contains the volumes.

lvmconfig --type full log/command_log_selection
command_log_selection="all"

#Ivs
Logical Volume

LV LSize Cpy%Sync
Ivol1 4.00m 100.00

71

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Ivol0 4.00m

Command Log

Seq LogType Context ObjType ObjName ObjGrp Msg Errno RetCode
1 status processinglv Ivol0 vg success O 1
2 status processinglv Ivoll vg success 0 1
3 status processingvg vg success O 1

lvchange -an vg/lvol1
Command Log

Seq LogType Context ObjType ObjName ObjGrp Msg Errno RetCode
1 status processinglv Ivol1 vg success O 1
2 status processingvg vg success O 1

For further information on configuring LVM reports and command logs, see the lvmreport man page.

72

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

You can create, activate, change, remove, display, and use LVM RAID volumes.

10.1. RAID LOGICAL VOLUMES
LVM supports RAID levels O, 1,4, 5, 6, and 10.
An LVM RAID volume has the following characteristics:

® RAID logical volumes created and managed by LVM leverage the Multiple Devices (MD) kernel
drivers.

® You can temporarily split RAID1images from the array and merge them back into the array later.
® | VM RAID volumes support snapshots.

Clusters

RAID logical volumes are not cluster-aware.

Although you can create and activate RAID logical volumes exclusively on one machine, you cannot
activate them simultaneously on more than one machine.

Subvolumes

When you create a RAID logical volume, LVM creates a metadata subvolume that is one extent in size
for every data or parity subvolume in the array.

For example, creating a 2-way RAID1 array results in two metadata subvolumes (lv_rmeta_0 and
Iv_rmeta_1) and two data subvolumes (lv_rimage_0 and Iv_rimage_1). Similarly, creating a 3-way
stripe (plus Timplicit parity device) RAID4 results in 4 metadata subvolumes (lv_rmeta_0, Iv_rmeta_1,
Iv_rmeta_2, and Iv_rmeta_3) and 4 data subvolumes (lv_rimage_0, Iv_rimage_1, Iv_rimage_2, and
Iv_rimage_3).

Integrity

You can lose data when a RAID device fails or when soft corruption occurs. Soft corruption in data
storage implies that the data retrieved from a storage device is different from the data written to that
device. Adding integrity to a RAID LV helps mitigate or prevent soft corruption. To learn more about soft
corruption and how to add integrity to a RAID LV, see Section 10.6, “"Using DM integrity with RAID LV".

10.2. RAID LEVELS AND LINEAR SUPPORT

RAID supports various configurations, including levels O, 1, 4, 5, 6, 10, and linear. These RAID types are
defined as follows:

Level O

RAID level O, often called striping, is a performance-oriented striped data mapping technique. This
means the data being written to the array is broken down into stripes and written across the member
disks of the array, allowing high I/O performance at low inherent cost but provides no redundancy.
Many RAID level O implementations only stripe the data across the member devices up to the size of
the smallest device in the array. This means that if you have multiple devices with slightly different
sizes, each device gets treated as though it was the same size as the smallest drive. Therefore, the

73

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

common storage capacity of a level O array is equal to the capacity of the smallest member disk in a
Hardware RAID or the capacity of smallest member partition in a Software RAID multiplied by the
number of disks or partitions in the array.

Level 1

RAID level 1, or mirroring, provides redundancy by writing identical data to each member disk of the
array, leaving a "mirrored" copy on each disk. Mirroring remains popular due to its simplicity and high
level of data availability. Level 1 operates with two or more disks, and provides very good data
reliability and improves performance for read-intensive applications but at a relatively high cost.
RAID level 1 comes at a high cost because you write the same information to all of the disks in the
array, provides data reliability, but in a much less space-efficient manner than parity based RAID
levels such as level 5. However, this space inefficiency comes with a performance benefit: parity-
based RAID levels consume considerably more CPU power in order to generate the parity while RAID
level 1simply writes the same data more than once to the multiple RAID members with very little
CPU overhead. As such, RAID level 1 can outperform the parity-based RAID levels on machines
where software RAID is employed and CPU resources on the machine are consistently taxed with
operations other than RAID activities.

The storage capacity of the level 1array is equal to the capacity of the smallest mirrored hard disk in
a Hardware RAID or the smallest mirrored partition in a Software RAID. Level 1redundancy is the
highest possible among all RAID types, with the array being able to operate with only a single disk
present.

Level 4

Level 4 uses parity concentrated on a single disk drive to protect data. Parity information is
calculated based on the content of the rest of the member disks in the array. This information can
then be used to reconstruct data when one disk in the array fails. The reconstructed data can then be
used to satisfy I/O requests to the failed disk before it is replaced and to repopulate the failed disk
after it has been replaced.

Because the dedicated parity disk represents an inherent bottleneck on all write transactions to the
RAID array, level 4 is seldom used without accompanying technologies such as write-back caching, or
in specific circumstances where the system administrator is intentionally designing the software
RAID device with this bottleneck in mind (such as an array that will have little to no write transactions
once the array is populated with data). RAID level 4 is so rarely used that it is not available as an
option in Anaconda. However, it could be created manually by the user if truly needed.

The storage capacity of Hardware RAID level 4 is equal to the capacity of the smallest member
partition multiplied by the number of partitions minus one. Performance of a RAID level 4 array is
always asymmetrical, meaning reads outperform writes. This is because writes consume extra CPU
and main memory bandwidth when generating parity, and then also consume extra bus bandwidth
when writing the actual data to disks because you are writing not only the data, but also the parity.
Reads need only read the data and not the parity unless the array is in a degraded state. As a result,
reads generate less traffic to the drives and across the buses of the computer for the same amount
of data transfer under normal operating conditions.

Level 5

74

This is the most common type of RAID. By distributing parity across all the member disk drives of an
array, RAID level 5 eliminates the write bottleneck inherent in level 4. The only performance
bottleneck is the parity calculation process itself. With modern CPUs and Software RAID, that is
usually not a bottleneck at all since modern CPUs can generate parity very fast. However, if you have
a sufficiently large number of member devices in a software RAID5S array such that the combined
aggregate data transfer speed across all devices is high enough, then this bottleneck can start to
come into play.

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

As with level 4, level 5 has asymmetrical performance, and reads substantially outperforming writes.
The storage capacity of RAID level 5 is calculated the same way as with level 4.

Level 6

This is a common level of RAID when data redundancy and preservation, and not performance, are
the paramount concerns, but where the space inefficiency of level 1is not acceptable. Level 6 uses a
complex parity scheme to be able to recover from the loss of any two drives in the array. This
complex parity scheme creates a significantly higher CPU burden on software RAID devices and also
imposes an increased burden during write transactions. As such, level 6 is considerably more
asymmetrical in performance than levels 4 and 5.

The total capacity of a RAID level 6 array is calculated similarly to RAID level 5 and 4, except that you
must subtract 2 devices (instead of 1) from the device count for the extra parity storage space.

Level 10

This RAID level attempts to combine the performance advantages of level O with the redundancy of
level 1. It also helps to alleviate some of the space wasted in level 1arrays with more than 2 devices.
With level 10, it is possible for instance to create a 3-drive array configured to store only 2 copies of
each piece of data, which then allows the overall array size to be 1.5 times the size of the smallest
devices instead of only equal to the smallest device (like it would be with a 3-device, level 1 array).
This avoids CPU process usage to calculate parity like with RAID level 6, but it is less space efficient.
The creation of RAID level 10 is not supported during installation. It is possible to create one manually
after installation.

Linear RAID

Linear RAID is a grouping of drives to create a larger virtual drive.

In linear RAID, the chunks are allocated sequentially from one member drive, going to the next drive
only when the first is completely filled. This grouping provides no performance benefit, as it is unlikely
that any I/O operations split between member drives. Linear RAID also offers no redundancy and
decreases reliability. If any one member drive fails, the entire array cannot be used. The capacity is
the total of all member disks.

10.3. LVM RAID SEGMENT TYPES

To create a RAID logical volume, you specify a raid type as the --type argument of the Ivcreate
command. The following table describes the possible RAID segment types.

For most users, specifying one of the five available primary types (raid1, raid4, raid5, raid6, raid10)
should be sufficient.

Table 10.1. LVM RAID segment types

Segment type Description

raid1 RAID1 mirroring. This is the default value for the --type argument of the
lvcreate command when you specify the-m but you do not specify
striping.

raid4 RAID4 dedicated parity disk

raid5 Same as raid5_lIs

75

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Segment type Description

raid5_la .
® RAID5S left asymmetric.
® Rotating parity O with data continuation
raid5_ra . .
o RAID5 right asymmetric.
® Rotating parity N with data continuation
raid5_lIs .
o RAID5 left symmetric.
® Rotating parity O with data restart
raid5_rs . .
o RAID5 right symmetric.
® Rotating parity N with data restart
raid6 Same as raid6_zr
raid6_zr
- ® RAIDG zero restart
® Rotating parity zero (left-to-right) with data restart
raid6_nr
- ® RAID6 N restart
® Rotating parity N (left-to-right) with data restart
raidé_nc .
e RAID6 N continue
® Rotating parity N (left-to-right) with data continuation
raid10 . . -
e Striped mirrors. This is the default value for the --type
argument of the lvcreate command if you specify the-m and
you specify a number of stripes that is greater than 1.
® Striping of mirror sets
raid0/raid0_meta Striping. RAIDO spreads logical volume data across multiple data

subvolumes in units of stripe size. This is used to increase performance.
Logical volume data will be lost if any of the data subvolumes fail.

76

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

10.4. CREATING RAID LOGICAL VOLUMES
This section provides example commands that create different types of RAID logical volume.

You can create RAID1 arrays with different numbers of copies according to the value you specify for the
-m argument. Similarly, you specify the number of stripes for a RAID 4/5/6 logical volume with the -i
argument. You can also specify the stripe size with the -l argument.

The following command creates a 2-way RAID1 array named my_Iv in the volume group my_vg that is
one gigabyte in size.

I # lvcreate --type raid1 -m 1 -L 1G -n my_Ivmy_vg

The following command creates a RAID5 array (3 stripes + Timplicit parity drive) named my_Iv in the
volume group my_vg that is one gigabyte in size. Note that you specify the number of stripes just as you
do for an LVM striped volume; the correct number of parity drives is added automatically.

I # lvcreate --type raid5 -i 3-L 1G -n my_Iv my_vg

The following command creates a RAID6 array (3 stripes + 2 implicit parity drives) named my_lv in the
volume group my_vg that is one gigabyte in size.

I # lvcreate --type raid6 -i 3 -L 1G -n my_Iv my_vg

10.5. CREATING A RAIDO (STRIPED) LOGICAL VOLUME

A RAIDO logical volume spreads logical volume data across multiple data subvolumes in units of stripe
size.

The format for the command to create a RAIDO volume is as follows.

Ivcreate --type raid0[_meta] --stripes Stripes --stripesize StripeSize VolumeGroup
[PhysicalVolumePath ...]

Table 10.2. RAIDO Command Creation parameters

Parameter Description

--type raid0[_meta] Specifying raid0 creates a RAIDO volume without
metadata volumes. Specifying raid0_meta creates
a RAIDO volume with metadata volumes. Because
RAIDO is non-resilient, it does not have to store any
mirrored data blocks as RAID1/10 or calculate and
store any parity blocks as RAID4/5/6 do. Hence, it
does not need metadata volumes to keep state about
resynchronization progress of mirrored or parity
blocks. Metadata volumes become mandatory on a
conversion from RAIDO to RAID4/5/6/10, however,
and specifying raid0_meta preallocates those
metadata volumes to prevent a respective allocation
failure.

77

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Parameter Description

--stripes Stripes Specifies the number of devices to spread the logical
volume across.

--stripesize StripeSize Specifies the size of each stripe in kilobytes. This is
the amount of data that is written to one device
before moving to the next device.

VolumeGrou, Specifies the volume group to use.
p

PhysicalVolumePath ... Specifies the devices to use. If this is not specified,
LVM will choose the number of devices specified by
the Stripes option, one for each stripe.

This example procedure creates an LVM RAIDO logical volume called mylv that stripes data across the
disks at /dev/sdal, /dev/sdb1, and /dev/sdci.

1. Label the disks you will use in the volume group as LVM physical volumes with the pvcreate
command.

' WARNING
A This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sdal /dev/sdb1 /dev/sdc1
Physical volume "/dev/sda1" successfully created
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdc1" successfully created

2. Create the volume group myvg. The following command creates the volume group myvg.

vgcreate myvg /dev/sdal /dev/sdb1 /dev/sdc1
Volume group "myvg" successfully created

You can use the vgs command to display the attributes of the new volume group.

#vgs
VG #PV #LV #SN Attr VSize VFree
myvg 3 0 Owz--n-51.45G 51.45G

3. Create a RAIDO logical volume from the volume group you have created. The following
command creates the RAIDO volume mylv from the volume group myvg. This example creates
a logical volume that is 2 gigabytes in size, with three stripes and a stripe size of 4 kilobytes.

78

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

Ivcreate --type raid0 -L 2G --stripes 3 --stripesize 4 -n mylv myvg
Rounding size 2.00 GiB (512 extents) up to stripe boundary size 2.00 GiB(513 extents).
Logical volume "mylv" created.

4. Create a file system on the RAIDO logical volume. The following command creates an ext4 file
system on the logical volume.

mkfs.ext4 /dev/imyvg/mylv
mke2fs 1.44.3 (10-July-2018)
Creating filesystem with 525312 4k blocks and 131376 inodes
Filesystem UUID: 9d4c0704-6028-450a-8b0a-8875358c0511
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

The following commands mount the logical volume and report the file system disk space usage.

mount /dev/myvg/mylv /mnt

df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/myvg-mylv 2002684 6168 1875072 1% /mnt

10.6. USING DM INTEGRITY WITH RAID LV

As a system administrator, you can use device mapper (DM) integrity with a RAID LV to minimize the risk
of data loss due to soft corruption or bit rot.

10.6.1. Soft data corruption

Soft corruption in data storage implies that the data retrieved from a storage device is different from
the data written to that device. The corrupted data can exist indefinitely on storage devices. You might
not discover this corrupted data until you retrieve and attempt to use this data.

Depending on the type of configuration, a Redundant Array of Independent Disks (RAID) LV prevents
data loss when a device fails. If a device comprising a RAID array fails, the data can be recovered from
other devices that are part of that RAID LV. However, a RAID configuration does not ensure the
integrity of the data itself. Soft corruption, silent corruption, soft errors, and silent errors are terms that
describe data that has become corrupted, even if the system design and software continues to function
as expected.

DM integrity is used with RAID levels 1, 4, 5, 6, and 10 to help mitigate or prevent data loss due to soft
corruption. The RAID layer ensures that a non-corrupted copy of the data can fix the soft corruption
errors. The integrity layer sits above each RAID image while an extra sub LV stores the integrity
metadata (data checksums) for each RAID image. When you retrieve data from an RAID LV with
integrity, the integrity data checksums analyze the data for corruption. If corruption is detected, the
integrity layer returns an error message, and the RAID layer retrieves a non-corrupted copy of the data
from another RAID image. The RAID layer automatically rewrites non-corrupted data over the corrupted
data to repair the soft corruption.

79

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

When creating a new RAID LV with DM integrity or adding integrity to an existing RAID LV, consider the
following:

TIP

The integrity metadata requires additional storage space. For each RAID image, every 500MB
data requires 4MB of additional storage space because of the checksums that get added to the
data.

While some RAID configurations are impacted more than others, adding DM integrity impacts
performance due to latency when accessing the data. A RAID1 configuration typically offers
better performance than RAIDS or its variants.

The RAID integrity block size also impacts performance. Configuring a larger RAID integrity
block size offers better performance. However, a smaller RAID integrity block size offers greater
backward compatibility.

There are two integrity modes available: bitmap or journal. The bitmap integrity mode typically
offers better performance than journal mode.

If you experience performance issues, Red Hat recommends that you either use RAID1 with integrity or
that you test the performance of a particular RAID configuration to ensure that it meets your
requirements.

10.6.2. Creating a RAID LV with DM integrity

When you create an RAID LV, adding DM integrity helps mitigate the risk of losing data due to soft
corruption.

Prerequisites

® You must have root access.

Procedure

® To create a RAID LV with DM integrity:

I # Ivcreate --type <raid-level> --raidintegrity y -L <usable-size> -n <logical-volume> <volume-
group>

where

<raid-level>

Specifies the RAID level of the RAID LV that you want to create.
<usable-size>

Specifies the usable size in MB.
<logical-volume>

Specifies the name of the LV that you want to create.
<volume-group>

Specifies the name of the volume group that you want to create the RAID LV under.

In the following example, we create an RAID LV with integrity named test-lv in the test-vg volume group,
with a usable size of 256M and RAID level 1.

80

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

Example RAID LV with integrity

Ivcreate --type raid1 --raidintegrity y -L256M -n test-Iv test-vg

Creating integrity metadata LV test-lv_rimage_0_imeta with size 8.00 MiB.
Logical volume "test-lv_rimage_0_imeta" created.
Creating integrity metadata LV test-lv_rimage_1_imeta with size 8.00 MiB.
Logical volume "test-lv_rimage_1_imeta" created.
Logical volume "test-Iv" created.

10.6.3. Adding DM integrity to an existing RAID LV

You can add DM integrity to an existing RAID LV to help mitigate the risk of losing data due to soft
corruption.

Prerequisites

® You must have root access.

Procedure

® To add DM integrity to an existing RAID LV:
I # Ivconvert --raidintegrity y <volume-group>/<logical-volume>

where

<volume-group>
Specifies the name of the volume group that you want to create the RAID LV under.
<logical-volume>

Specifies the name of the LV that you want to create.

10.6.4. Removing integrity from a RAID LV

Adding integrity to a RAID LV limits the number of operations that you can perform on that RAID LV.
Therefore, you must remove the integrity before performing certain operations.

Prerequisites

® You must have root access.
Procedure
® Toremove integrity from a RAID LV:
I # Ivconvert --raidintegrity n <volume-group>/<logical-volume>

where

<volume-group>
Specifies the name of the volume group that you want to create the RAID LV under.

<logical-volume>

81

Red Hat Enterprise Linux 8 Configuring and managing logical volumes
Specifies the name of the LV that you want to create.

10.6.5. Viewing DM integrity information

When you create a RAID LV with integrity or when you add integrity to an existing RAID LV, use the
following command to view information about the integrity:

I # Ivs -a <volume-group>

where <volume-group> is the name of the volume group that contains the RAID LV with integrity.

The following example shows information about the test-lv RAID LV that was created in the test-vg
volume group.

Ivs -a test-vg
LV VG Attr LSize Origin Cpy%Sync
test-lv test-vg rwi-a-r--- 256.00m 2.10
[test-Iv_rimage_0] test-vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig] 93.75
[test-lv_rimage_0_imeta] test-vg ewi-ao---- 8.00m
[test-lv_rimage_0_iorig] test-vg -wi-ao---- 256.00m
[test-Iv_rimage_1] test-vg gwi-aor--- 256.00m [test-lv_rimage_1_iorig] 85.94
[test-lv_rimage_1_imeta] test-vg ewi-ao---- 8.00m
[test-lv_rimage_1_iorig] test-vg -wi-ao---- 256.00m
[test-lv_rmeta_0] test-vg ewi-aor--- 4.00m
[test-lv_rmeta_1] test-vg ewi-aor--- 4.00m

Synchronization

When you create a RAID LV with integrity or add integrity to an existing RAID LV, we recommend that
you wait for the integrity synchronization and the RAID metadata to complete before using the LV.
Otherwise, the background initialization might impact the LV's performance. The Cpy%Sync column
indicates the synchronization progress for both the top level RAID LV and for each RAID image. The
RAID image is indicated in the LV column by raid_image_N. Refer to the LV column to ensure that the
synchronization progress displays 100% for the top level RAID LV and for each RAID image.

RAID images using integrity

The g attribute in the attributes listed under the Attr column indicates that the RAID image is using
integrity. The integrity checksums are stored in the _imeta RAID LV.

To display the type for each RAID LV, add the -o+segtype option to the Ivs command:

Ivs -a my-vg -o+segtype

LV VG Attr LSize Origin Cpy%Sync Type

test-lv test-vg rwi-a-r--- 256.00m 87.96 raid1
[test-Iv_rimage_0] test-vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig] 100.00 integrity
[test-lv_rimage_0_imeta] test-vg ewi-ao---- 8.00m linear
[test-lv_rimage_0_iorig] test-vg -wi-ao---- 256.00m linear
[test-Iv_rimage_1] test-vg gwi-aor--- 256.00m [test-lv_rimage_1_iorig] 100.00 integrity
[test-lv_rimage_1_imeta] test-vg ewi-ao---- 8.00m linear
[test-lv_rimage_1_iorig] test-vg -wi-ao---- 256.00m linear
[test-lv_rmeta_0] test-vg ewi-aor--- 4.00m linear
[test-lv_rmeta_1] test-vg ewi-aor--- 4.00m linear

Integrity mismatches

82

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

There is an incremental counter that counts the number of mismatches detected on each RAID image.
To view the data mismatches detected by integrity on a particular RAID image, run the following
command:

lvs -o+integritymismatches <volume-groups/<logical-volume>_raid-image_<n>
where

<volume-group>

Specifies the name of the volume group that you want to create the RAID LV under.
<logical-volume>

Specifies the name of the LV that you want to create.
<n>

Specifies the RAID image that you want to view the integrity mismatch information for.

You must run the command for each RAID image that you want to view. In the following example, we will
view the data mismatches from rimage_0 under test-vg/test-Iv.

Ivs -o+integritymismatches test-vg/test-lv_rimage 0
LV VG Attr LSize Origin Cpy%Sync IntegMismatches
[test-lv_rimage_0] test-vg gwi-aor--- 256.00m [test-lv_rimage 0 _iorig] 100.00 0

We can see that integrity has not detected any data mismatches and thus the IntegMismatches
counter shows zero (0).

Integrity mismatches in kernel message logs

You can also find data integrity information in the kernel message logs, as shown in the following
examples.

Example of dm-integrity mismatches from the kernel message logs

I device-mapper: integrity: dm-12: Checksum failed at sector 0x24e7

Example of dm-integrity data corrections from the kernel message logs

I md/raid1:mdX: read error corrected (8 sectors at 9448 on dm-16)

10.6.6. Additional resources

® For more information on all the available options, see the lvmraid command man page(s).

10.7. CONTROLLING THE RATE AT WHICH RAID VOLUMES ARE
INITIALIZED

When you create RAID10 logical volumes, the background I/O required to initialize the logical volumes
with a sync operation can crowd out other /O operations to LVM devices, such as updates to volume
group metadata, particularly when you are creating many RAID logical volumes. This can cause the other
LVM operations to slow down.

You can control the rate at which a RAID logical volume is initialized by implementing recovery throttling.
You control the rate at which sync operations are performed by setting the minimum and maximum 1/O

83

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

rate for those operations with the --minrecoveryrate and --maxrecoveryrate options of the lvcreate
command. You specify these options as follows.

e --maxrecoveryrate Rate[bBsSkKmMgG]
Sets the maximum recovery rate for a RAID logical volume so that it will not crowd out nominal
I/O operations. The Rate is specified as an amount per second for each device in the array. If no
suffix is given, then kiB/sec/device is assumed. Setting the recovery rate to O means it will be
unbounded.

® --minrecoveryrate Rate[bBsSkKmMgG]
Sets the minimum recovery rate for a RAID logical volume to ensure that |/O for sync
operations achieves a minimum throughput, even when heavy nominal I/O is present. The Rate
is specified as an amount per second for each device in the array. If no suffix is given, then
kiB/sec/device is assumed.

The following command creates a 2-way RAID10 array with 3 stripes that is 10 gigabytes in size with a
maximum recovery rate of 128 kiB/sec/device. The array is named my_lv and is in the volume group

my_vg.
I # Ivcreate --type raid10 -i 2 -m 1 -L 10G --maxrecoveryrate 128 -n my_Iv my_vg

You can also specify minimum and maximum recovery rates for a RAID scrubbing operation.

10.8. CONVERTING A LINEAR DEVICE TO A RAID DEVICE

You can convert an existing linear logical volume to a RAID device by using the --type argument of the
Ivconvert command.

The following command converts the linear logical volume my_lv in volume group my_vg to a 2-way
RAIDT1 array.

I # lvconvert --type raid1 -m 1 my_vg/my_lIv

Since RAID logical volumes are composed of metadata and data subvolume pairs, when you convert a
linear device to a RAID1 array, a new metadata subvolume is created and associated with the original
logical volume on (one of) the same physical volumes that the linear volume is on. The additional images
are added in metadata/data subvolume pairs. For example, if the original device is as follows:

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv /dev/sde1(0)

After conversion to a 2-way RAID1 array the device contains the following data and metadata subvolume
pairs:

lvconvert --type raid1 -m 1 my_vg/my_lIv
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 6.25 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sde1(0)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rmeta_0] /dev/sde1(256)
[my_Iv_rmeta_1] /dev/sdf1(0)

84

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

If the metadata image that pairs with the original logical volume cannot be placed on the same physical
volume, the lvconvert will fail.

10.9. CONVERTING AN LVM RAID1LOGICAL VOLUME TO AN LVM
LINEAR LOGICAL VOLUME

You can convert an existing RAID1 LVM logical volume to an LVM linear logical volume with the
Iveonvert command by specifying the -m0 argument. This removes all the RAID data subvolumes and
all the RAID metadata subvolumes that make up the RAID array, leaving the top-level RAID1image as
the linear logical volume.

The following example displays an existing LVM RAID1 logical volume.

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sde(1)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)

The following command converts the LVM RAID1 logical volume my_vg/my_lv to an LVM linear device.

Ivconvert -m0 my_vg/my_lv

lvs -a -0 name,copy_percent,devices my_vg
LV~ Copy% Devices
my_lv /dev/sdei(1)

When you convert an LVM RAID1 logical volume to an LVM linear volume, you can specify which physical
volumes to remove. The following example shows the layout of an LVM RAIDT1logical volume made up of
two images: /dev/sda1 and /dev/sdb1. In this example, the lvconvert command specifies that you want
to remove /dev/sda1, leaving /dev/sdb1 as the physical volume that makes up the linear device.

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sdai(1)
[my_Iv_rimage_1] /dev/sdb1(1)
[my_Iv_rmeta_0] /dev/sdai(0)
[my_Iv_rmeta_1] /dev/sdb1(0)

lvconvert -m0 my_vg/my_lv /dev/sda1

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv /dev/sdb1(1)

10.10. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 DEVICE

You can convert an existing mirrored LVM device with a segment type of mirror to a RAID1LVM device
with the Iveonvert command by specifying the --type raid1 argument. This renames the mirror
subvolumes (mimage) to RAID subvolumes (rimage). In addition, the mirror log is removed and
metadata subvolumes (rmeta) are created for the data subvolumes on the same physical volumes as
the corresponding data subvolumes.

85

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

The following example shows the layout of a mirrored logical volume my_vg/my_lIv.

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 15.20 my_Iv_mimage_0(0),my_Iv_mimage_1(0)
[my_Iv_mimage_0] /dev/sde1(0)
[my_Iv_mimage_1] /dev/sdf1(0)
[my_Iv_mlog] /dev/sdd1(0)

The following command converts the mirrored logical volume my_vg/my_Iv to a RAID1 logical volume.

lvconvert --type raid1 my_vg/my_lv
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sde1(0)
[my_Iv_rimage 1] /dev/sdf1(0)
[my_Iv_rmeta_0] /dev/sde1(125)
[my_Iv_rmeta_1] /dev/sdf1(125)

10.11. RESIZING A RAID LOGICAL VOLUME
You can resize a RAID logical volume in the following ways;

® You can increase the size of a RAID logical volume of any type with the Ivresize or Ivextend
command. This does not change the number of RAID images. For striped RAID logical volumes
the same stripe rounding constraints apply as when you create a striped RAID logical volume.

® You can reduce the size of a RAID logical volume of any type with the Ivresize or Ivreduce
command. This does not change the number of RAID images. As with the Ivextend command,
the same stripe rounding constraints apply as when you create a striped RAID logical volume.

® You can change the number of stripes on a striped RAID logical volume (raid4/5/6/10) with the -
-stripes N parameter of the lvconvert command. This increases or reduces the size of the RAID
logical volume by the capacity of the stripes added or removed. Note that raid10 volumes are
capable only of adding stripes. This capability is part of the RAID reshaping feature that allows
you to change attributes of a RAID logical volume while keeping the same RAID level. For
information on RAID reshaping and examples of using the lvconvert command to reshape a
RAID logical volume, see the lvmraid(7) man page.

10.12. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1
DEVICE

You can change the number of images in an existing RAID1 array just as you can change the number of
images in the earlier implementation of LVM mirroring. Use the lveonvert command to specify the
number of additional metadata/data subvolume pairs to add or remove.

When you add images to a RAID1 device with the lveconvert command, you can specify the total number
of images for the resulting device, or you can specify how many images to add to the device. You can
also optionally specify on which physical volumes the new metadata/data image pairs will reside.

Metadata subvolumes (named rmeta) always exist on the same physical devices as their data

subvolume counterparts rimage). The metadata/data subvolume pairs will not be created on the same
physical volumes as those from another metadata/data subvolume pair in the RAID array (unless you

86

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

specify --alloc anywhere).

The format for the command to add images to a RAID1 volume is as follows:

Ivconvert -m new_absolute _count vg/lv [removable _PVs]
Ivconvert -m +num_additional_images vg/lv [removable _PVs]

For example, the following command displays the LVM device my_vg/my_lv, which is a 2-way RAIDI1
array:

lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_Iv 6.25 my_lIv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sde1(0)

[my_Iv_rimage_1] /dev/sdf1(1)

[my_Iv_rmeta_0] /dev/sde1(256)

[my_Iv_rmeta_1] /dev/sdf1(0)

The following command converts the 2-way RAID1 device my_vg/my_Iv to a 3-way RAID1 device:

Ivconvert -m 2 my_vg/my_Iv
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 6.25 my_Ilv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde1(0)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rimage_2] /dev/sdgi(1)
[my_Iv_rmeta_0] /dev/sde1(256)
[my_Iv_rmeta_1] /dev/sdf1(0)
[my_Iv_rmeta_2] /dev/sdg1(0)

When you add an image to a RAID]1 array, you can specify which physical volumes to use for the image.
The following command converts the 2-way RAID1 device my_vg/my_Iv to a 3-way RAID1 device,
specifying that the physical volume /dev/sdd1 be used for the array:

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 56.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sdai(1)
[my_Iv_rimage_1] /dev/sdb1(1)
[my_Iv_rmeta_0] /dev/sdai(0)
[my_Iv_rmeta_1] /dev/sdb1(0)
lvconvert -m 2 my_vg/my_Iv /dev/sdd1
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 28.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sdai(1)
[my_Iv_rimage_1] /dev/sdb1(1)
[my_Iv_rimage_2] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sdai(0)
[my_Iv_rmeta_1] /dev/sdb1(0)
[my_Iv_rmeta_2] /dev/sdd1(0)

To remove images from a RAID1 array, use the following command. When you remove images from a

87

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

RAID1 device with the Iveonvert command, you can specify the total number of images for the resulting
device, or you can specify how many images to remove from the device. You can also optionally specify
the physical volumes from which to remove the device.

Ivconvert -m new_absolute _count vg/lv [removable_PVs]
Ivconvert -m -num_fewer_images vg/lv [removable_PVs]

Additionally, when an image and its associated metadata subvolume volume are removed, any higher-
numbered images will be shifted down to fill the slot. If you remove Iv_rimage_1 from a 3-way RAID]1
array that consists of Iv_rimage_0, Iv_rimage_1, and Iv_rimage_2, this results in a RAID1 array that
consists of Iv_rimage_0 and Iv_rimage_1. The subvolume Iv_rimage_2 will be renamed and take over
the empty slot, becoming Iv_rimage 1.

The following example shows the layout of a 3-way RAID1 logical volume my_vg/my_Iv.

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde(1)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rimage_2] /dev/sdgi(1)
[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)
[my_Iv_rmeta_2] /dev/sdg1(0)

The following command converts the 3-way RAID1logical volume into a 2-way RAID1 logical volume.

Ivconvert -m1 my_vg/my_lv

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sde1(1)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)

The following command converts the 3-way RAID1logical volume into a 2-way RAID1 logical volume,
specifying the physical volume that contains the image to remove as /dev/sde1.

lvconvert -m1 my_vg/my_lv /dev/sde1
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage 0] /dev/sdf1(1)
[my_Iv_rimage 1] /dev/sdgi(1)
[my_Iv_rmeta_0] /dev/sdf1(0)
[my_Iv_rmeta_1] /dev/sdg1(0)

10.13. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL
VOLUME

You can split off an image of a RAID logical volume to form a new logical volume.

88

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

The format of the command to split off a RAID image is as follows:

I Ivconvert --splitmirrors count -n splitname vg/lv [removable_PVs]

Just as when you are removing a RAID image from an existing RAID1 logical volume, when you remove a
RAID data subvolume (and its associated metadata subvolume) from the middle of the device any
higher numbered images will be shifted down to fill the slot. The index numbers on the logical volumes
that make up a RAID array will thus be an unbroken sequence of integers.

NOTE
You cannot split off a RAID image if the RAID1 array is not yet in sync.

The following example splits a 2-way RAID1 logical volume, my_lv, into two linear logical volumes, my_Iv
and new.

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 12.00 my_Iv_rimage_0(0),my_lIv_rimage_1(0)
[my_Iv_rimage_0] /dev/sde1(1)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)

Ivconvert --splitmirror 1 -n new my_vg/my_|Iv

lvs -a -0 name,copy_percent,devices my_vg
LV~ Copy% Devices
my_lv /dev/sdei(1)
new /dev/sdf1(1)

The following example splits a 3-way RAID1 logical volume, my_lv, into a 2-way RAID1 logical volume,
my_lv, and a linear logical volume, new

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde(1)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rimage_2] /dev/sdgi(1)
[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)
[my_Iv_rmeta_2] /dev/sdg1(0)
Ivconvert --splitmirror 1 -n new my_vg/my_lIv
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sde1(1)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)
new /dev/sdgi(1)

10.14. SPLITTING AND MERGING A RAID IMAGE

89

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

You can temporarily split off an image of a RAID1 array for read-only use while keeping track of any
changes by using the --trackchanges argument in conjunction with the --splitmirrors argument of the
Ivconvert command. This allows you to merge the image back into the array at a later time while
resyncing only those portions of the array that have changed since the image was split.

The format for the lveonvert command to split off a RAID image is as follows.

I Ivconvert --splitmirrors count --trackchanges vg/lv [removable _PVs]

When you split off a RAID image with the --trackchanges argument, you can specify which image to
split but you cannot change the name of the volume being split. In addition, the resulting volumes have
the following constraints.

® The new volume you create is read-only.

® You cannot resize the new volume.

® You cannot rename the remaining array.

® You cannot resize the remaining array.

® You can activate the new volume and the remaining array independently.

You can merge an image that was split off with the --trackchanges argument specified by executing a
subsequent lvconvert command with the --merge argument. When you merge the image, only the
portions of the array that have changed since the image was split are resynced.

The format for the lveonvert command to merge a RAID image is as follows.

I Ivconvert --merge raid_image

The following example creates a RAIDT1 logical volume and then splits off an image from that volume
while tracking changes to the remaining array.

lvcreate --type raid1 -m 2 -L 1G -n my_Iv my_vg
Logical volume "my_Iv" created
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_Iv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sdb1(1)
[my_Iv_rimage_1] /dev/sdc1(1)
[my_Iv_rimage_2] /dev/sdd1(1)
[my_Iv_rmeta_0] /dev/sdb1(0)
[my_Iv_rmeta_1] /dev/sdc1(0)
[my_Iv_rmeta_2] /dev/sdd1(0)
Ivconvert --splitmirrors 1 --trackchanges my_vg/my_lv
my_Iv_rimage_2 split from my_lIv for read-only purposes.
Use 'lvconvert --merge my_vg/my_Iv_rimage_2' to merge back into my_Iv
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_Iv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sdb1(1)
[my_Iv_rimage_1] /dev/sdc1(1)
my_lv_rimage_2 /dev/sdd1(1)

90

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

[my_Iv_rmeta_0] /dev/sdb1(0)
[my_Iv_rmeta_1] /dev/sdc1(0)
[my_Iv_rmeta_2] /dev/sdd1(0)

The following example splits off an image from a RAID1 volume while tracking changes to the remaining
array, then merges the volume back into the array.

Ivconvert --splitmirrors 1 --trackchanges my_vg/my_lv

Iv_rimage_1 split from my_lIv for read-only purposes.

Use 'lvconvert --merge my_vg/my_Iv_rimage_1'to merge back into my_Iv
lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sdc1(1)

my_lv_rimage_1 /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sdc1(0)

[my_Iv_rmeta_1] /dev/sdd1(0)

Ivconvert --merge my_vg/my_Iv_rimage_1
my_vg/my_lv_rimage_1 successfully merged back into my_vg/my_Iv
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sdc1(1)
[my_Iv_rimage_1] /dev/sdd1(1)
[my_Iv_rmeta_0] /dev/sdc1(0)
[my_Iv_rmeta_1] /dev/sdd1(0)

10.15. SETTING A RAID FAULT POLICY

LVM RAID handles device failures in an automatic fashion based on the preferences defined by the
raid_fault_policy field in the lvm.conf file.

e |f theraid_fault_policy field is set to allocate, the system will attempt to replace the failed
device with a spare device from the volume group. If there is no available spare device, this will
be reported to the system log.

e |f theraid_fault_policy field is set to warn, the system will produce a warning and the log will
indicate that a device has failed. This allows the user to determine the course of action to take.

As long as there are enough devices remaining to support usability, the RAID logical volume will continue
to operate.

10.15.1. The allocate RAID Fault Policy

In the following example, the raid_fault_policy field has been set to allocate in the Ivm.conf file. The
RAID logical volume is laid out as follows.

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_Iv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde(1)
[my_Iv_rimage_1] /dev/sdf1(1)
[my_Iv_rimage 2] /dev/sdgi(1)

o1

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)
[my_Iv_rmeta_2] /dev/sdg1(0)

If the /dev/sde device fails, the system log will display error messages.

grep lvm /var/log/messages

Jan 17 15:57:18 bp-01 Ivm[8599]: Device #0 of raid1 array, my_vg-my_lv, has failed.
Jan 17 15:57:18 bp-01 Ivm[8599]: /dev/sde1: read failed after 0 of 2048 at
250994294784 Input/output error

Jan 17 15:57:18 bp-01 Ivm[8599]: /dev/sde1: read failed after 0 of 2048 at
250994376704: Input/output error

Jan 17 15:57:18 bp-01 Ivm[8599]: /dev/sde: read failed after 0 of 2048 at O:
Input/output error

Jan 17 15:57:18 bp-01 Ivm[8599]: /dev/sde1: read failed after 0 of 2048 at
4096: Input/output error

Jan 17 15:57:19 bp-01 lvm[8599]: Couldn't find device with uuid
3lugiV-3eSP-AFAR-sdrP-H200-wM2M-qdMANy.

Jan 17 15:57:27 bp-01 lvm[8599]: raid1 array, my_vg-my_lv, is not in-sync.
Jan 17 15:57:36 bp-01 lvm[8599]: raid1 array, my_vg-my_lv, is now in-sync.

Since the raid_fault_policy field has been set to allocate, the failed device is replaced with a new
device from the volume group.

lvs -a -0 name,copy_percent,devices vg
Couldn't find device with uuid 3lugiV-3eSP-AFAR-sdrP-H200-wM2M-qdMANYy.
LV Copy% Devices
v 100.00 Iv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
[Ilv_rimage_Q0] /dev/sdhi(1)
[Ilv_rimage_1] /dev/sdf1(1)
[Ilv_rimage_2] /dev/sdgi(1)
[Ilv_rmeta_0] /dev/sdh1(0)
[Ilv_rmeta_1] /dev/sdf1(0)
[Ilv_rmeta_2] /dev/sdg1(0)

Note that even though the failed device has been replaced, the display still indicates that LVM could not
find the failed device. This is because, although the failed device has been removed from the RAID
logical volume, the failed device has not yet been removed from the volume group. To remove the failed
device from the volume group, you can execute vgreduce --removemissing VG.

If the raid_fault_policy has been set to allocate but there are no spare devices, the allocation will fail,
leaving the logical volume as it is. If the allocation fails, you have the option of fixing the drive, then
initiating recovery of the failed device with the --refresh option of the lvchange command. Alternately,
you can replace the failed device.

10.15.2. The warn RAID Fault Policy

In the following example, the raid_fault_policy field has been set to warn in the Ilvm.conf file. The RAID
logical volume is laid out as follows.

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lIv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage 0] /dev/sdh1(1)
[my_Iv_rimage_1] /dev/sdf1(1)

92

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

[my_Iv_rimage 2] /dev/sdgi(1)
[my_Iv_rmeta_0] /dev/sdh1(0)
[my_Iv_rmeta_1] /dev/sdf1(0)
[my_Iv_rmeta_2] /dev/sdg1(0)
If the /dev/sdh device fails, the system log will display error messages. In this case, however, LVM will

not automatically attempt to repair the RAID device by replacing one of the images. Instead, if the
device has failed you can replace the device with the --repair argument of the Ivconvert command.

10.16. REPLACING A RAID DEVICE IN A LOGICAL VOLUME

You can replace a RAID device in a logical volume.

® |f there has been no failure on the RAID device, follow Section 10.16.1, “Replacing a RAID device
that has not failed”.

e |f the RAID device has failed, follow Section 10.16.4, “Replacing a failed RAID device in a logical
volume”.

10.16.1. Replacing a RAID device that has not failed

To replace a RAID device in a logical volume, use the --replace argument of the Ivconvert command.

Prerequisites

® The RAID device has not failed. The following commands will not work if the RAID device has
failed.

Procedure

® Replace the RAID device:
I # Ivconvert --replace dev_to_remove vg/lv possible replacements

o Replace dev_to_remove with the path to the physical volume that you want to replace.
o Replace vg/Iv with the volume group and logical volume name of the RAID array.

o Replace possible_replacements with the path to the physical volume that you want to use as
a replacement.

Example 10.1. Replacing a RAID1device

The following example creates a RAID1 logical volume and then replaces a device in that volume.

1. Create the RAID1 array:

Ivcreate --type raid1 -m 2 -L 1G -n my_Iv my_vg

Logical volume "my_Iv" created
2. Examine the RAID1 array:

I # Ivs -a -0 name,copy_percent,devices my_vg

93

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

LV Copy% Devices

my_Iv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sdb1(1)

[my_Iv_rimage_1] /dev/sdb2(1)

[my_Iv_rimage_2] /dev/sdc1(1)

[my_Iv_rmeta_0] /dev/sdb1(0)

[my_Iv_rmeta_1] /dev/sdb2(0)

[my_Iv_rmeta_2] /dev/sdc1(0)

3. Replace the /dev/sdb2 physical volume:

I # Ivconvert --replace /dev/sdb2 my_vg/my_Iv

4. Examine the RAID1array with the replacement:

LV Copy% Devices

my_Iv 37.50 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sdb1(1)

[my_Iv_rimage 1] /dev/sdc2(1)

[my_Iv_rimage_2] /dev/sdc1(1)

[my_Iv_rmeta_0] /dev/sdb1(0)

[my_Iv_rmeta_1] /dev/sdc2(0)

Ivs -a -0 name,copy_percent,devices my_vg
[my_Iv_rmeta_2] /dev/sdc1(0)

Example 10.2. Specifying the replacement physical volume

The following example creates a RAID1 logical volume and then replaces a device in that volume,
specifying which physical volume to use for the replacement.

1. Create the RAID1 array:
Ivcreate --type raid1 -m 1 -L 100 -n my_Iv my_vg

Logical volume "my_Iv" created

2. Examine the RAID1 array:

Ivs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sdai(1)

[my_Iv_rimage_1] /dev/sdb1(1)

[my_Iv_rmeta_0] /dev/sdai(0)

[my_Iv_rmeta_1] /dev/sdb1(0)

3. Examine the physical volumes:

I # pvs

94

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

PV VG Fmt Attr PSize PFree

/dev/sdal my_vg Ivm2a-- 1020.00m 916.00m
/dev/sdb1 my _vg Ivm2 a-- 1020.00m 916.00m
/dev/sdc1 my_vg Ivm2 a-- 1020.00m 1020.00m
/dev/sdd1 my vg Ivm2 a-- 1020.00m 1020.00m

4. Replace the /dev/sdb1 physical volume with /dev/sdd1:
I # Ivconvert --replace /dev/sdb1 my_vg/my_Iv /dev/sdd1

5. Examine the RAID1 array with the replacement:

LV Copy% Devices

my_lv 28.00 my_lv_rimage_0(0),my_Iv_rimage_1(0)
[my_Iv_rimage_0] /dev/sdai(1)

[my_Iv_rimage_1] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sdai(0)

Ivs -a -0 name,copy_percent,devices my_vg
[my_Iv_rmeta_1] /dev/sdd1(0)

Example 10.3. Replacing multiple RAID devices

You can replace more than one RAID device at a time by specifying multiple replace arguments, as
in the following example.

1. Create a RAID1 array:
Ivcreate --type raid1 -m 2 -L 100 -n my_Iv my_vg

Logical volume "my_Iv" created
2. Examine the RAIDT1 array:

Ivs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_Iv 100.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sdai(1)

[my_Iv_rimage_1] /dev/sdb1(1)

[my_Iv_rimage_2] /dev/sdc1(1)

[my_Iv_rmeta_0] /dev/sdai(0)

[my_Iv_rmeta_1] /dev/sdb1(0)

[my_Iv_rmeta_2] /dev/sdc1(0)

3. Replace the /dev/sdb1 and /dev/sdc1 physical volumes:
I # Ivconvert --replace /dev/sdb1 --replace /dev/sdc1 my_vg/my_Iv
4. Examine the RAID1 array with the replacements:

I # Ivs -a -0 name,copy_percent,devices my_vg

95

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

[my_Iv_rimage_0] /dev/sdai(1)
[my_Iv_rimage_1] /dev/sdd1(1)
[my_Iv_rimage_2] /dev/sde(1)
[my_Iv_rmeta_0] /dev/sdai(0)
[my_Iv_rmeta_1] /dev/sdd1(0)

LV Copy% Devices
my_Iv 60.00 my_Iv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rmeta_2] /dev/sde1(0)

10.16.2. Failed devices in LVM RAID

RAID is not like traditional LVM mirroring. LVM mirroring required failed devices to be removed or the
mirrored logical volume would hang. RAID arrays can keep on running with failed devices. In fact, for
RAID types other than RAID1, removing a device would mean converting to a lower level RAID (for
example, from RAID6 to RAID5, or from RAID4 or RAID5 to RAIDO).

Therefore, rather than removing a failed device unconditionally and potentially allocating a replacement,
LVM allows you to replace a failed device in a RAID volume in a one-step solution by using the --repair
argument of the lveconvert command.

10.16.3. Recovering a failed RAID device in a logical volume

If the LVM RAID device failure is a transient failure or you are able to repair the device that failed, you
can initiate recovery of the failed device.

Prerequisites

® The previously failed device is now working.
Procedure
® Refresh the logical volume that contains the RAID device:

I # Ivchange --refresh my_vg/my_Iv

Verification steps

® Examine the logical volume with the recovered device:

I # Ivs --all --options name,devices,lv_attr,Iv_health_status my vg

10.16.4. Replacing a failed RAID device in a logical volume

This procedure replaces a failed device that serves as a physical volume in an LVM RAID logical volume.

Prerequisites

® The volume group includes a physical volume that provides enough free capacity to replace the
failed device.
If no physical volume with sufficient free extents is available on the volume group, add a new,
sufficiently large physical volume using the vgextend utility.

96

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

Procedure

1. In the following example, a RAID logical volume is laid out as follows:

Ivs --all --options name,copy_percent,devices my_vg

LV Cpy%Sync Devices

my_Iv 100.00 my_lIv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde1(1)

[my_Iv_rimage_1] /dev/sdci(1)

[my_Iv_rimage_2] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sde1(0)

[my_Iv_rmeta_1] /dev/sdc1(0)

[my_Iv_rmeta_2] /dev/sdd1(0)

2. If the /dev/sdc device fails, the output of the lvs command is as follows:

Ivs --all --options name,copy_percent,devices my_vg

/dev/sdc: open failed: No such device or address

Couldn't find device with uuid A4kRI2-vIzA-uyCb-cci7-bOod-H5tX-1zH4Ee.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rimage_1 while checking used and
assumed devices.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rmeta_1 while checking used and
assumed devices.

LV Cpy%Sync Devices

my_Iv 100.00 my_lIv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde1(1)

[my_Iv_rimage_1] [unknown](1)

[my_Iv_rimage_2] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sde1(0)

[my_Iv_rmeta_1] [unknown](0)

[my_Iv_rmeta_2] /dev/sdd1(0)

3. Replace the failed device and display the logical volume:

Ivconvert --repair my_vg/my_Iv

/dev/sdc: open failed: No such device or address

Couldn't find device with uuid A4kRI2-vIzA-uyCb-cci7-bOod-H5tX-1zH4Ee.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rimage_1 while checking used and
assumed devices.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rmeta_1 while checking used and
assumed devices.
Attempt to replace failed RAID images (requires full device resync)? [y/n]: y

Faulty devices in my_vg/my_Iv successfully replaced.

Optional: To manually specify the physical volume that replaces the failed device, add the
physical volume at the end of the command:

I # Ivconvert --repair my_vg/my_Iv replacement_pv

4. Examine the logical volume with the replacement:

97

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Ivs --all --options name,copy_percent,devices my_vg

/dev/sdc: open failed: No such device or address

/dev/sdc1: open failed: No such device or address

Couldn't find device with uuid A4kRI2-vizA-uyCb-cci7-bOod-H5tX-IzH4Ee.

LV Cpy%Sync Devices

my_Iv 43.79 my_lv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde1(1)

[my_Iv_rimage_1] /dev/sdb1(1)

[my_Iv_rimage_2] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdb1(0)
[my_Iv_rmeta_2] /dev/sdd1(0)

Until you remove the failed device from the volume group, LVM utilities still indicate that LVM
cannot find the failed device.

5. Remove the failed device from the volume group:

I # vgreduce --removemissing VG

10.177. CHECKING DATA COHERENCY IN A RAID LOGICAL VOLUME
(RAID SCRUBBING)

LVM provides scrubbing support for RAID logical volumes. RAID scrubbing is the process of reading all
the data and parity blocks in an array and checking to see whether they are coherent.

Procedure

1. Optional: Limit the I/O bandwidth that the scrubbing process uses.
When you perform a RAID scrubbing operation, the background I/O required by the sync
operations can crowd out other I/O to LVM devices, such as updates to volume group metadata.
This might cause the other LVM operations to slow down. You can control the rate of the
scrubbing operation by implementing recovery throttling.

Add the following options to the Ivehange --syncaction commands in the next steps:

--maxrecoveryrate Rate[bBsSkKmMgG]

Sets the maximum recovery rate so that the operation does crowd out nominal I/O
operations. Setting the recovery rate to O means that the operation is unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate to ensure that I/O for sync operations achieves a minimum
throughput, even when heavy nominal I/O is present.

Specify the Rate value as an amount per second for each device in the array. If you provide no
suffix, the options assume kiB per second per device.

2. Display the number of discrepancies in the array, without repairing them:

I # lvchange --syncaction check vg/raid_Iv

3. Correct the discrepancies in the array:

98

CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES

I # Ivchange --syncaction repair vg/raid_Iv

NOTE

The Ivchange --syncaction repair operation does not perform the same
function as the Ivconvert --repair operation:

® The Ilvchange --syncaction repair operation initiates a background
synchronization operation on the array.

e The Ilvconvert --repair operation repairs or replaces failed devices in a mirror
or RAID logical volume.

4. Optional: Display information about the scrubbing operation:

I # Ivs -0 +raid_sync_action,raid_mismatch_count vg/lv

e The raid_sync_action field displays the current synchronization operation that the RAID

volume is performing. It can be one of the following values:
idle

All sync operations complete (doing nothing)
resync

Initializing an array or recovering after a machine failure
recover

Replacing a device in the array
check

Looking for array inconsistencies
repair

Looking for and repairing inconsistencies

® The raid_mismatch_count field displays the number of discrepancies found during a

check operation.

® The Cpy%Sync field displays the progress of the sync operations.

® The Iv_attr field provides additional indicators. Bit 9 of this field displays the health of the

logical volume, and it supports the following indicators:

o m (mismatches) indicates that there are discrepancies in a RAID logical volume. This
character is shown after a scrubbing operation has detected that portions of the RAID
are not coherent.

o r(refresh) indicates that a device in a RAID array has suffered a failure and the kernel
regards it as failed, even though LVM can read the device label and considers the
device to be operational. Refresh the logical volume to notify the kernel that the device
is now available, or replace the device if you suspect that it failed.

Additional resources

® For more information, see the Ivehange(8) and Ivmraid(7) man pages.

99

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

10.18. CONVERTING A RAID LEVEL (RAID TAKEOVER)

LVM supports Raid takeover, which means converting a RAID logical volume from one RAID level to
another (such as from RAID 5 to RAID 6). Changing the RAID level is usually done to increase or
decrease resilience to device failures or to restripe logical volumes. You use the lveonvert for RAID
takeover. For information on RAID takeover and for examples of using the lvconvert to convert a RAID
logical volume, see the lvmraid(7) man page.

10.19. CHANGING ATTRIBUTES OF A RAID VOLUME (RAID RESHAPE)

RAID reshaping means changing attributes of a RAID logical volume while keeping the same RAID level.
Some attributes you can change include RAID layout, stripe size, and number of stripes. For information
on RAID reshaping and examples of using the lveonvert command to reshape a RAID logical volume,
see the lvmraid(7) man page.

10.20. CONTROLLING I/O OPERATIONS ON A RAID1LOGICAL
VOLUME

You can control the I/O operations for a device in a RAID1logical volume by using the --writemostly and
--writebehind parameters of the lIvchange command. The format for using these parameters is as
follows.

e --[raid]writemostly PhysicalVolume[:{t|y|n}]
Marks a device in a RAID1 logical volume as write-mostly. All reads to these drives will be
avoided unless necessary. Setting this parameter keeps the number of I/O operations to the
drive to a minimum. By default, the write-mostly attribute is set to yes for the specified physical
volume in the logical volume. It is possible to remove the write-mostly flag by appending :nto
the physical volume or to toggle the value by specifying :t. The --writemostly argument can be
specified more than one time in a single command, making it possible to toggle the write-mostly
attributes for all the physical volumes in a logical volume at once.

e --[raid]writebehind /OCount
Specifies the maximum number of outstanding writes that are allowed to devices in a RAID1
logical volume that are marked as write-mostly. Once this value is exceeded, writes become
synchronous, causing all writes to the constituent devices to complete before the array signals
the write has completed. Setting the value to zero clears the preference and allows the system
to choose the value arbitrarily.

10.21. CHANGING THE REGION SIZE ON A RAID LOGICAL VOLUME

When you create a RAID logical volume, the region size for the logical volume will be the value of the
raid_region_size parameter in the /etc/lvm/lvm.conf file. You can override this default value with the -
R option of the lvcreate command.

After you have created a RAID logical volume, you can change the region size of the volume with the -R
option of the Ivconvert command. The following example changes the region size of logical volume
vg/raidlv to 4096K. The RAID volume must be synced in order to change the region size.

lvconvert -R 4096K vg/raidi
Do you really want to change the region_size 512.00 KiB of LV vg/raid1 to 4.00 MiB? [y/n]:y
Changed region size on RAID LV vg/raid1 to 4.00 MiB.

100

CHAPTER 11. SNAPSHOT LOGICAL VOLUMES

CHAPTER 1. SNAPSHOT LOGICAL VOLUMES

The LVM snapshot feature provides the ability to create virtual images of a device at a particular instant
without causing a service interruption.

11.1. SNAPSHOT VOLUMES

The LVM snapshot feature provides the ability to create virtual images of a device at a particular instant
without causing a service interruption. When a change is made to the original device (the origin) after a
snapshot is taken, the snapshot feature makes a copy of the changed data area as it was prior to the
change so that it can reconstruct the state of the device.

NOTE

LVM supports thinly-provisioned snapshots.

Because a snapshot copies only the data areas that change after the snapshot is created, the snapshot
feature requires a minimal amount of storage. For example, with a rarely updated origin, 3-5 % of the
origin’s capacity is sufficient to maintain the snapshot.

NOTE

Snapshot copies of a file system are virtual copies, not an actual media backup for a file
system. Snapshots do not provide a substitute for a backup procedure.

The size of the snapshot governs the amount of space set aside for storing the changes to the origin
volume. For example, if you made a snapshot and then completely overwrote the origin the snapshot
would have to be at least as big as the origin volume to hold the changes. You need to dimension a
snapshot according to the expected level of change. So for example a short-lived snapshot of a read-
mostly volume, such as /usr, would need less space than a long-lived snapshot of a volume that sees a
greater number of writes, such as /home.

If a snapshot runs full, the snapshot becomes invalid, since it can no longer track changes on the origin
volume. You should regularly monitor the size of the snapshot. Snapshots are fully resizable, however, so
if you have the storage capacity you can increase the size of the snapshot volume to prevent it from
getting dropped. Conversely, if you find that the snapshot volume is larger than you need, you can
reduce the size of the volume to free up space that is needed by other logical volumes.

When you create a snapshot file system, full read and write access to the origin stays possible. If a chunk
on a snapshot is changed, that chunk is marked and never gets copied from the original volume.

There are several uses for the snapshot feature:

® Most typically, a snapshot is taken when you need to perform a backup on a logical volume
without halting the live system that is continuously updating the data.

® You can execute the fsck command on a snapshot file system to check the file system integrity
and determine whether the original file system requires file system repair.

® Because the snapshot is read/write, you can test applications against production data by taking
a snapshot and running tests against the snapshot, leaving the real data untouched.

101

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

® You can create LVM volumes for use with Red Hat Virtualization. LVM snapshots can be used to
create snapshots of virtual guest images. These snapshots can provide a convenient way to
modify existing guests or create new guests with minimal additional storage.

You can use the --merge option of the Ivconvert command to merge a snapshot into its origin volume.
One use for this feature is to perform system rollback if you have lost data or files or otherwise need to
restore your system to a previous state. After you merge the snapshot volume, the resulting logical
volume will have the origin volume’s name, minor number, and UUID and the merged snapshot is
removed.

11.2. CREATING SNAPSHOT VOLUMES

Use the -s argument of the Ivecreate command to create a snapshot volume. A snapshot volume is
writable.

NOTE

LVM snapshots are not supported across the nodes in a cluster. You cannot create a

snapshot volume in a shared volume group. However, if you need to create a consistent
' backup of data on a shared logical volume you can activate the volume exclusively and

then create the snapshot.

NOTE

Snapshots are supported for RAID logical volumes.

LVM does not allow you to create a snapshot volume that is larger than the size of the origin volume plus
needed metadata for the volume. If you specify a snapshot volume that is larger than this, the system
will create a snapshot volume that is only as large as will be needed for the size of the origin.

By default, a snapshot volume is skipped during normal activation commands.

The following procedure creates an origin logical volume named origin and a snapshot volume of the
original volume named snap.

1. Create a logical volume named origin from the volume group VG.

Ivcreate -L 1G -n origin VG
Logical volume "origin" created.

2. Create a snapshot logical volume of /dev/VG/origin that is 100 MB in size named shap. If the
original logical volume contains a file system, you can mount the snapshot logical volume on an
arbitrary directory in order to access the contents of the file system to run a backup while the
original file system continues to get updated.

Ivcreate --size 100M --snapshot --name snap /dev/VG/origin
Logical volume "snap" created.

3. Display the status of logical volume /dev/VG/origin, showing all snapshot logical volumes and
their status (active or inactive).

lvdisplay /dev/VG/origin
--- Logical volume ---
LV Path /dev/VG/origin

102

CHAPTER 11. SNAPSHOT LOGICAL VOLUMES

LV Name origin
VG Name VG
LV UUID EsFoBp-CB9H-Epl5-pUO4-Yevi-EdFS-xtFnaF

LV Write Access read/write
LV Creation host, time host-083.virt.lab.msp.redhat.com, 2019-04-11 14:45:06 -0500
LV snapshot status source of

snap [active]

LV Status available
open 0

LV Size 1.00 GiB
Current LE 256
Segments 1
Allocation inherit

Read ahead sectors auto
- currently setto 8192
Block device 253:6

4. The lvs command, by default, displays the origin volume and the current percentage of the
snapshot volume being used. The following example shows the default output for the Ivs
command after you have created the snapshot volume, with a display that includes the devices
that constitute the logical volumes.

Ilvs -a -0 +devices

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
Devices

origin VG owi-a-s--- 1.00g /dev/sde1(0)

shap VG swi-a-s--- 100.00m origin 0.00 /dev/sde1(256)

' WARNING
A Because the snapshot increases in size as the origin volume changes, it is important

to monitor the percentage of the snapshot volume regularly with the lvs command
to be sure it does not fill. A snapshot that is 100% full is lost completely, as a write to
unchanged parts of the origin would be unable to succeed without corrupting the
shapshot.

In addition to the snapshot itself being invalidated when full, any mounted file systems on that snapshot
device are forcibly unmounted, avoiding the inevitable file system errors upon access to the mount
point. In addition, you can specify the shapshot_autoextend_threshold option in the lvm.conf file. This
option allows automatic extension of a snapshot whenever the remaining snapshot space drops below
the threshold you set. This feature requires that there be unallocated space in the volume group.

LVM does not allow you to create a snapshot volume that is larger than the size of the origin volume plus
needed metadata for the volume. Similarly, automatic extension of a snapshot will not increase the size
of a snapshot volume beyond the maximum calculated size that is necessary for the snapshot. Once a
snapshot has grown large enough to cover the origin, it is no longer monitored for automatic extension.

Information on setting shapshot_autoextend_threshold and snapshot_autoextend_percent is
provided in the /etc/lvm/lvm.conf file itself.

103

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

11.3. MERGING SNAPSHOT VOLUMES

You can use the --merge option of the Ivconvert command to merge a snapshot into its origin volume.
If both the origin and snapshot volume are not open, the merge will start immediately. Otherwise, the
merge will start the first time either the origin or snapshot are activated and both are closed. Merging a
snapshot into an origin that cannot be closed, for example a root file system, is deferred until the next
time the origin volume is activated. When merging starts, the resulting logical volume will have the
origin's name, minor number and UUID. While the merge is in progress, reads or writes to the origin
appear as they were directed to the snapshot being merged. When the merge finishes, the merged
snapshot is removed.

The following command merges snapshot volume vg00/Ivol1_snap into its origin.

I # lvconvert --merge vg00/Ivol1_snap

You can specify multiple snapshots on the command line, or you can use LVM object tags to specify
that multiple snapshots be merged to their respective origins. In the following example, logical volumes
vg00/lvold, vg00/Ivol2, and vg00/lvol3 are all tagged with the tag @some_tag. The following command
merges the snapshot logical volumes for all three volumes serially: vg00/lvold1, then vg00/lvol2, then

vg00/lvol3. If the --background option were used, all snapshot logical volume merges would start in
parallel.

I # Ivconvert --merge @some_tag

For further information on the lvconvert --merge command, see the Ivconvert(8) man page.

104

CHAPTER 12. CREATING AND MANAGING THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES;

CHAPTER 12. CREATING AND MANAGING THINLY-
PROVISIONED LOGICAL VOLUMES (THIN VOLUMES)

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger than
the available extents.

12.1. THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES)

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger than
the available extents. Using thin provisioning, you can manage a storage pool of free space, known as a
thin pool, which can be allocated to an arbitrary number of devices when needed by applications. You
can then create devices that can be bound to the thin pool for later allocation when an application
actually writes to the logical volume. The thin pool can be expanded dynamically when needed for cost-
effective allocation of storage space.

NOTE

Thin volumes are not supported across the nodes in a cluster. The thin pool and all its thin
volumes must be exclusively activated on only one cluster node.

By using thin provisioning, a storage administrator can overcommit the physical storage, often avoiding
the need to purchase additional storage. For example, if ten users each request a I00GB file system for
their application, the storage administrator can create what appears to be a 100GB file system for each
user but which is backed by less actual storage that is used only when needed.

NOTE

When using thin provisioning, it is important that the storage administrator monitor the
storage pool and add more capacity if it starts to become full.

To make sure that all available space can be used, LVM supports data discard. This allows for re-use of
the space that was formerly used by a discarded file or other block range.

For information on creating thin volumes, see Creating thinly-provisioned logical volumes .
Thin volumes provide support for a new implementation of copy-on-write (COW) snapshot logical

volumes, which allow many virtual devices to share the same data in the thin pool. For information on
thin snapshot volumes, see Thinly-provisioned snapshot volumes .

12.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES
This procedure provides an overview of the basic commands you use to create and grow thinly-

provisioned logical volumes. For detailed information on LVM thin provisioning as well as information on
using the LVM commands and utilities with thinly-provisioned logical volumes, see the lvmthin(7) man

page.
To create a thin volume, perform the following tasks:
1. Create a volume group with the vgcreate command.
2. Create a thin pool with the lvcreate command.

3. Create a thin volume in the thin pool with the Ivcreate command.

105

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

You can use the -T (or --thin) option of the Ivcreate command to create either a thin pool or a thin
volume. You can also use -T option of the Ivcreate command to create both a thin pool and a thin
volume in that pool at the same time with a single command.

The following command uses the -T option of the Ivcreate command to create a thin pool named
mythinpool in the volume group vg001 and that is IOOM in size. Note that since you are creating a pool
of physical space, you must specify the size of the pool. The -T option of the Ivcreate command does
not take an argument; it deduces what type of device is to be created from the other options the
command specifies.

Ivcreate -L 100M -T vg001/mythinpool
Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
Logical volume "mythinpool” created.

#lvs
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
mythinpool vg001 twi-a-tz-- 100.00m 0.00 10.84

The following command uses the -T option of the Ivcreate command to create a thin volume named
thinvolume in the thin pool vg001/mythinpool. Note that in this case you are specifying virtual size, and
that you are specifying a virtual size for the volume that is greater than the pool that contains it.

Ivcreate -V 1G -T vg001/mythinpool -n thinvolume

WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool vg001/mythinpool
(100.00 MiB).

WARNING: You have not turned on protection against thin pools running out of space.

WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger automatic extension
of thin pools before they get full.

Logical volume "thinvolume" created.

#lvs

LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mythinpool vg001 twi-a-tz 100.00m 0.00

thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00

The following command uses the -T option of the lvcreate command to create a thin pool and a thin
volume in that pool by specifying both a size and a virtual size argument for the Ivcreate command. This
command creates a thin pool named mythinpool in the volume group vg001 and it also creates a thin
volume named thinvolume in that pool.

Ivcreate -L 100M -T vg001/mythinpool -V 1G -n thinvolume

Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.

WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool vg001/mythinpool
(100.00 MiB).

WARNING: You have not turned on protection against thin pools running out of space.

WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger automatic extension
of thin pools before they get full.

Logical volume "thinvolume" created.

#lvs
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
mythinpool vg001 twi-aotz-- 100.00m 0.00 10.94

thinvolume vg001 Vwi-a-tz-- 1.00g mythinpool 0.00

You can also create a thin pool by specifying the --thinpool parameter of the lvcreate command. Unlike
the -T option, the --thinpool parameter requires an argument, which is the name of the thin pool logical
volume that you are creating. The following example specifies the --thinpool parameter of the Ivcreate
command to create a thin pool named mythinpool in the volume group vg001 and that is I00M in size:

106

CHAPTER 12. CREATING AND MANAGING THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES;

lvcreate -L 100M --thinpool mythinpool vg001
Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
Logical volume "mythinpool” created.

#1lvs
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
mythinpool vg001 twi-a-tz-- 100.00m 0.00 10.84

Use the following criteria for using the chunk size:

® A smaller chunk size requires more metadata and hinders performance, but provides better
space utilization with snapshots.

® A bigger chunk size requires less metadata manipulation, but makes the snapshot less space
efficient.

By default, Ivm2 starts with a 64KiB chunk size and increases its value when the resulting size of the thin
pool metadata device grows above 128MiB, this keeps the metadata size compact. However, this may
result in some big chunk size values, which are less space efficient for snapshot usage. In such cases, a
smaller chunk size and a bigger metadata size is a better option.

If the volume data size is in the range of TiB, use ~15.8GiB as the metadata size, which is the maximum
supported size, and set the chunk size as per your requirement. But, note that it is not possible to
increase the metadata size if you need to extend the volume's data size and have a small chunk size.

' WARNING
A Red Hat does not recommend setting a chunk size smaller than the default value. If

the chunk size is too small and your volume runs out of space for metadata, the
volume is unable to create data. Monitor your logical volumes to ensure that they
are expanded, or create more storage before the metadata volumes become
completely full. Ensure that you set up your thin pool with a large enough chunk size
so that they do not run out of room for the metadata.

Striping is supported for pool creation. The following command creates a I00M thin pool named pool in
volume group vg001 with two 64 kB stripes and a chunk size of 256 kB. It also creates a 1T thin volume,
vg00/thin_lIv.

I # Ivcreate -i 2 -1 64 -c 256 -L 100M -T vg00/pool -V 1T --name thin_lv

You can extend the size of a thin volume with the Ivextend command. You cannot, however, reduce the
size of a thin pool.

The following command resizes an existing thin pool that is TOOM in size by extending it another 100M.

lvextend -L+100M vg001/mythinpool
Extending logical volume mythinpool to 200.00 MiB
Logical volume mythinpool successfully resized
#Ivs

107

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mythinpool vg001 twi-a-tz 200.00m 0.00
thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00

As with other types of logical volumes, you can rename the volume with the Ivrename, you can remove
the volume with the Ivremove, and you can display information about the volume with the Ivs and
Ivdisplay commands.

By default, the Ivecreate command sets the size of the thin pool’s metadata logical volume according to
the formula (Pool_LV_size / Pool_LV_chunk_size * 64). If you will have large numbers of snapshots or if
you have have small chunk sizes for your thin pool and thus expect significant growth of the size of the
thin pool at a later time, you may need to increase the default value of the thin pool’'s metadata volume
with the --poolmetadatasize parameter of the Ivereate command. The supported value for the thin
pool's metadata logical volume is in the range between 2MiB and 16GiB.

You can use the --thinpool parameter of the Ivconvert command to convert an existing logical volume
to a thin pool volume. When you convert an existing logical volume to a thin pool volume, you must use
the --poolmetadata parameter in conjunction with the --thinpool parameter of the lvconvert to
convert an existing logical volume to the thin pool volume’s metadata volume.

NOTE

Converting a logical volume to a thin pool volume or a thin pool metadata volume
destroys the content of the logical volume, since in this case the Ivconvert does not
preserve the content of the devices but instead overwrites the content.

The following example converts the existing logical volume Iv1 in volume group vg001 to a thin pool
volume and converts the existing logical volume Iv2 in volume group vg001 to the metadata volume for
that thin pool volume.

Ivconvert --thinpool vg001/lv1 --poolmetadata vg001/Iv2
Converted vg001/Iv1 to thin pool.

12.3. THINLY-PROVISIONED SNAPSHOT VOLUMES

Red Hat Enterprise Linux provides support for thinly-provisioned snapshot volumes. Thin snapshot
volumes allow many virtual devices to be stored on the same data volume. This simplifies administration
and allows for the sharing of data between snapshot volumes.

As for all LVM snapshot volumes, as well as all thin volumes, thin snapshot volumes are not supported
across the nodes in a cluster. The snapshot volume must be exclusively activated on only one cluster
node.

Thin snapshot volumes provide the following benefits:

® A thin snapshot volume can reduce disk usage when there are multiple snapshots of the same
origin volume.

e |f there are multiple snapshots of the same origin, then a write to the origin will cause one COW
operation to preserve the data. Increasing the number of snapshots of the origin should yield no

major slowdown.

® Thin snapshot volumes can be used as a logical volume origin for another snapshot. This allows
for an arbitrary depth of recursive snapshots (snapshots of snapshots of snapshots...).

108

CHAPTER 12. CREATING AND MANAGING THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES;

® A snapshot of a thin logical volume also creates a thin logical volume. This consumes no data
space untila COW operation is required, or until the snapshot itself is written.

® A thin snapshot volume does not need to be activated with its origin, so a user may have only the
origin active while there are many inactive snapshot volumes of the origin.

® When you delete the origin of a thinly-provisioned snapshot volume, each snapshot of that
origin volume becomes an independent thinly-provisioned volume. This means that instead of
merging a snapshot with its origin volume, you may choose to delete the origin volume and then
create a new thinly-provisioned snapshot using that independent volume as the origin volume
for the new snapshot.

Although there are many advantages to using thin snapshot volumes, there are some use cases for which
the older LVM snapshot volume feature may be more appropriate to your needs:

® You cannot change the chunk size of a thin pool. If the thin pool has a large chunk size (for
example, IMB) and you require a short-living snapshot for which a chunk size that large is not
efficient, you may elect to use the older snapshot feature.

® You cannot limit the size of a thin snapshot volume; the snapshot will use all of the space in the
thin pool, if necessary. This may not be appropriate for your needs.

In general, you should consider the specific requirements of your site when deciding which snapshot
format to use.

NOTE

When using thin provisioning, it is important that the storage administrator monitor the
storage pool and add more capacity if it starts to become full. For information on
configuring and displaying information on thinly-provisioned snapshot volumes, see
Creating thinly-provisioned snapshot volumes .

12.4. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES

Red Hat Enterprise Linux provides support for thinly-provisioned snapshot volumes.

NOTE

This section provides an overview of the basic commands you use to create and grow
thinly-provisioned snapshot volumes. For detailed information on LVM thin provisioning
as well as information on using the LVM commands and utilities with thinly-provisioned
logical volumes, see the lvmthin(7) man page.

IMPORTANT

When creating a thin snapshot volume, you do not specify the size of the volume. If you
specify a size parameter, the snapshot that will be created will not be a thin snapshot
volume and will not use the thin pool for storing data. For example, the command
Ivcreate -s vg/thinvolume -L10M will not create a thin snapshot, even though the origin
volume is a thin volume.

Thin snapshots can be created for thinly-provisioned origin volumes, or for origin volumes that are not
thinly-provisioned.

109

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

You can specify a name for the snapshot volume with the --name option of the Ivcreate command. The
following command creates a thinly-provisioned snapshot volume of the thinly-provisioned logical
volume vg001/thinvolume that is named mysnapshoti.

lvcreate -s --name mysnapshot1 vg001/thinvolume
Logical volume "mysnapshot1" created

#lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mysnapshot1 vg001 Vwi-a-tz 1.00g mythinpool thinvolume 0.00

mythinpool vg001 twi-a-tz 100.00m 0.00
thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00
NOTE

When using thin provisioning, it is important that the storage administrator monitor the
storage pool and add more capacity if it starts to become full. For information on
extending the size of a thin volume, see Creating thinly-provisioned logical volumes .

A thin snapshot volume has the same characteristics as any other thin volume. You can independently
activate the volume, extend the volume, rename the volume, remove the volume, and even snapshot
the volume.

By default, a snapshot volume is skipped during normal activation commands. For information on
controlling the activation of a logical volume, see Logical volume activation.

You can also create a thinly-provisioned snapshot of a non-thinly-provisioned logical volume. Since the
non-thinly-provisioned logical volume is not contained within a thin pool, it is referred to as an external
origin. External origin volumes can be used and shared by many thinly-provisioned snapshot volumes,
even from different thin pools. The external origin must be inactive and read-only at the time the thinly-
provisioned snapshot is created.

To create a thinly-provisioned snapshot of an external origin, you must specify the --thinpool option.
The following command creates a thin snapshot volume of the read-only inactive volume
origin_volume. The thin snapshot volume is named mythinsnap. The logical volume origin_volume
then becomes the thin external origin for the thin snapshot volume mythinsnap in volume group vg001
that will use the existing thin pool vg001/pool. Because the origin volume must be in the same volume

group as the snapshot volume, you do not need to specify the volume group when specifying the origin
logical volume.

I # Ivcreate -s --thinpool vg001/pool origin_volume --name mythinsnap

You can create a second thinly-provisioned snapshot volume of the first snapshot volume, as in the
following command.

I # lvcreate -s vg001/mythinsnap --name my2ndthinsnap

You can display a list of all ancestors and descendants of a thin snapshot logical volume by specifying
the Iv_ancestors and Iv_descendants reporting fields of the lvs command.

In the following example:
e stack1 is an origin volume in volume group vg001.

e stack2is a snapshot of stackl

110

CHAPTER 12. CREATING AND MANAGING THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES;

e stack3 is a snapshot of stack2

e stack4 is a snapshot of stack3
Additionally:

e stack5 is also a snapshot of stack2

e stack6 is a snapshot of stack5

$ Ivs -0 name,lv_ancestors,lv_descendants vg001

LV Ancestors Descendants

stack1 stack2,stack3,stack4,stack5,stack6
stack?2 stack1 stack3,stack4,stack5,stack6
stack3 stack?2,stackl stack4

stack4 stack3,stack2,stack1

stack5 stack?2,stacki stack6

stack6 stack5,stack?2,stack1

pool

NOTE

The Iv_ancestors and Iv_descendants fields display existing dependencies but do not
track removed entries which can break a dependency chain if the entry was removed from
the middle of the chain. For example, if you remove the logical volume stack3 from this
sample configuration, the display is as follows.

$ Ivs -0 name,lv_ancestors,lv_descendants vg001

LV Ancestors Descendants
stack1 stack2,stack5,stack6
stack2 stackl stack5,stack6
stack4

stack5 stack?2,stacki stack6

stack6 stack5,stack?2,stack1

pool

You can configure your system to track and display logical volumes that have been
removed, and you can display the full dependency chain that includes those volumes by
specifying the Iv_ancestors_full and Iv_descendants_full fields.

12.5. TRACKING AND DISPLAYING THIN SNAPSHOT VOLUMES THAT
HAVE BEEN REMOVED

You can configure your system to track thin snapshot and thin logical volumes that have been removed
by enabling the record_lvs_history metadata option in the Ilvm.conf configuration file. This allows you
to display a full thin snapshot dependency chain that includes logical volumes that have been removed
from the original dependency chain and have become historical logical volumes.

You can configure your system to retain historical volumes for a defined period of time by specifying the
retention time, in seconds, with the lvs_history_retention_time metadata option in the Ivm.conf

configuration file.

A historical logical volume retains a simplified representation of the logical volume that has been
removed, including the following reporting fields for the volume:

m

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Iv_time_removed: the removal time of the logical volume

Iv_time: the creation time of the logical volume

® |v_name: the name of the logical volume

Iv_uuid: the UUID of the logical volume

® vg_name: the volume group that contains the logical volume.
When a volume is removed, the historical logical volume name acquires a hypen as a prefix. For example,
when you remove the logical volume Ivol1, the name of the historical volume is -lvol1. A historical logical
volume cannot be reactivated.
Even when the record_lvs_history metadata option enabled, you can prevent the retention of historical
logical volumes on an individual basis when you remove a logical volume by specifying the --nohistory
option of the Ivremove command.
To include historical logical volumes in volume display, you specify the -H|--history option of an LVM
display command. You can display a full thin snapshot dependency chain that includes historical volumes

by specifying the Iv_full_ancestors and Iv_full_descendants reporting fields along with the -H option.

The following series of commands provides examples of how you can display and manage historical
logical volumes.

1. Ensure that historical logical volumes are retained by setting record_Ivs_history=1 in the
Ivm.conf file. This metadata option is not enabled by default.

2. Enter the following command to display a thin provisioned snapshot chain.
In this example:

® lvol1is an origin volume, the first volume in the chain.
® |vol2is a snapshot of Ivoll.
® |vol3is a snapshot of Ivol2.
® |vol4is a snapshot of Ivol3.

® |vol5is also a snapshot of Ivol3.
Note that even though the example Ivs display command includes the -H option, no thin
snapshot volume has yet been removed and there are no historical logical volumes to
display.

lvs -H -0 name,full_ancestors,full_descendants
LV FAncestors FDescendants

Ivol1 Ivol2,lvol3,lvol4,lvol5
Ivol2 Ivoll Ivol3,lvol4,lvol5
Ivol3 Ivol2,lvold Ivol4,lvol5

Ivol4 Ivol3,lvol2,lvold
Ivol5 Ivol3,lvol2,Ivold
pool

3. Remove logical volume Ivol3 from the snapshot chain, then run the following Ivs command
again to see how historical logical volumes are displayed, along with their ancestors and
descendants.

12

CHAPTER 12. CREATING AND MANAGING THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES;

Ivremove -f vg/lvol3
Logical volume "lvol3" successfully removed
lvs -H -0 name,full_ancestors,full_descendants

LV FAncestors FDescendants
Ivol1 Ivol2,-Ivol3,lvol4,lvol5
Ivol2 Ivoll -lvol3,lvol4,lvol5
-lvol3 Ivol2,lvoll Ivol4,lvol5

Ivol4 -lvol3,lvol2,lvoll
Ivol5 -Ivol3,lvol2,lvold
pool

4. You can use the Iv_time_removed reporting field to display the time a historical volume was
removed.

Ivs -H -0 name,full_ancestors,full_descendants,time_removed

LV~ FAncestors FDescendants RTime

Ivol1 Ivol2,-Ivol3,lvol4,lvol5

Ivol2 Ivoll -lvol3,lvol4,lvol5

-lvol3 Ivol2,Ilvoll Ivol4,lvol5 2016-03-14 14:14:32 +0100

Ivol4 -lvol3,lvol2,lvoll
Ivol5 -Ivol3,lvol2,lvold
pool

5. You can reference historical logical volumes individually in a display command by specifying the
vgname/Ivname format, as in the following example. Note that the fifth bitin the Iv_attr field is
set to h to indicate the volume is a historical volume.

Ivs -H vg/-lvol3
LV VG Aitr LSize
-lvol3 vg ----h----- 0

6. LVM does not keep historical logical volumes if the volume has no live descendant. This means
that if you remove a logical volume at the end of a snapshot chain, the logical volume is not
retained as a historical logical volume.

Ivremove -f vg/lvol5
Automatically removing historical logical volume vg/-Ivol5.
Logical volume "lvol5" successfully removed

lvs -H -0 name,full_ancestors,full_descendants

LV ~ FAncestors FDescendants
Ivol1 Ivol2,-Ivol3,lvol4
Ivol2 Ivoll -lvol3,Ivol4

-lvol3 Ivol2,lvoll Ivol4

Ivol4 -lvol3,lvol2,lvoll

pool

7. Run the following commands to remove the volume Ivol1 and Ivol2 and to see how the Ivs
command displays the volumes once they have been removed.

Ivremove -f vg/lvol1 vg/lvol2
Logical volume "lvol1" successfully removed
Logical volume "lvol2" successfully removed

lvs -H -0 name,full_ancestors,full_descendants
LV FAncestors FDescendants

13

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

-lvold -lvol2,-Ivol3,lvol4
-lvol2 -Ivol1 -lvol3,lvol4
-lvol3 -Ivol2,-Ivol1 Ivol4

Ivol4 -lvol3,-lvol2,-Ivold

pool

8. Toremove a historical logical volume completely, you can run the Ivremove command again,
specifying the name of the historical volume that now includes the hyphen, as in the following
example.

Ivremove -f vg/-lvol3

Historical logical volume "Ivol3" successfully removed

Ivs -H -0 name,full_ancestors,full_descendants
LV FAncestors FDescendants

-lvold -lvol2,lvol4
-lvol2 -Ivol1 Ivol4
Ivol4 -lvol2,-lvoll

pool

9. Ahistorical logical volumes is retained as long as there is a chain that includes live volumes in its
descendants. This means that removing a historical logical volume also removes all of the logical
volumes in the chain if no existing descendant is linked to them, as shown in the following
example.

Ivremove -f vg/lvol4
Automatically removing historical logical volume vg/-Ivol1.
Automatically removing historical logical volume vg/-Ivol2.
Automatically removing historical logical volume vg/-Ivol4.
Logical volume "lvol4" successfully removed

14

CHAPTER 13. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

CHAPTER 13. ENABLING CACHING TO IMPROVE LOGICAL
VOLUME PERFORMANCE

You can add caching to an LVM logical volume to improve performance. LVM then caches I/O
operations to the logical volume using a fast device, such as an SSD.

The following procedures create a special LV from the fast device, and attach this special LV to the
original LV to improve the performance.

13.1. CACHING METHODS IN LVM

LVM provides the following kinds of caching. Each one is suitable for different kinds of I/O patterns on
the logical volume.

dm-cache

This method speeds up access to frequently used data by caching it on the faster volume. The
method caches both read and write operations.
The dm-cache method creates logical volumes of the type cache.

dm-writecache

This method caches only write operations. The faster volume stores the write operations and then
migrates them to the slower disk in the background. The faster volume is usually an SSD or a
persistent memory (PMEM) disk.

The dm-writecache method creates logical volumes of the type writecache.

Additional resources

e Forinformation on cache modes and other details, see the lIvmcache(7) man page.

13.2. LVM CACHING COMPONENTS

When you enable caching for a logical volume, LVM renames and hides the original volumes, and
presents a new logical volume that is composed of the original logical volumes. The composition of the
new logical volume depends on the caching method and whether you are using the cachevol or
cachepool option.

The cachevol and cachepool options expose different levels of control over the placement of the
caching components:

e With the cachevol option, the faster device stores both the cached copies of data blocks and
the metadata for managing the cache.

e With the cachepool option, separate devices can store the cached copies of data blocks and
the metadata for managing the cache.
The dm-writecache method is not compatible with cachepool.

In all configurations, LVM exposes a single resulting device, which groups together all the caching
components. The resulting device has the same name as the original slow logical volume.

13.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME

This procedure enables caching of commonly used data on a logical volume using the dm-cache method.

115

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Prerequisites
® Aslow logical volume that you want to speed up using dm-cache exists on your system.

® The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

Procedure

1. Create a cachevol volume on the fast device:
I # Ivcreate --size cachevol-size --name fastvol vg /dev/fast-pv

Replace the following values:

cachevol-size
The size of the cachevol volume, such as 5G
fastvol
A name for the cachevol volume
vg
The volume group name
/dev/fast-pv
The path to the fast block device, such as /dev/sdf1

2. Attach the cachevol volume to the main logical volume to begin caching:
I # Ivconvert --type cache --cachevol fastvol vg/main-lv

Replace the following values:

fastvol

The name of the cachevol volume
vg

The volume group name
main-lv

The name of the slow logical volume

Verification steps

® [Examine the newly created devices:

Ivs --all --options +devices vg

LV Pool Type Devices

main-lv [fastvol_cvol] cache main-Iv_corig(0)
[fastvol_cvol] linear /dev/fast-pv
[main-Iv_corig] linear /dev/slow-pv

Additional resources

16

CHAPTER 13. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

e Forinformation on this procedure and other details, including administrative examples, see the
Ilvmcache(7) man page.

13.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A
LOGICAL VOLUME

This procedure enables you to create the cache data and the cache metadata logical volumes
individually and then combine the volumes into a cache pool.

Prerequisites

® Aslow logical volume that you want to speed up using dm-cache exists on your system.

® The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

Procedure

1. Create a cachepool volume on the fast device:
I # Ivcreate --type cache-pool --size cachepool-size --name fastpool vg /dev/fast

Replace the following values:

cachepool-size
The size of the cachepool, such as 5G
fastpool
A name for the cachepool volume
vg
The volume group name
/dev/fast
The path to the fast block device, such as /dev/sdf1

b NOTE
You can use --poolmetadata option to specify the location of the pool
b metadata when creating the cache-pool.

2. Attach the cachepool to the main logical volume to begin caching:
I # Ivconvert --type cache --cachepool fastpool vg/main

Replace the following values:

fastpool

The name of the cachepool volume
vg

The volume group name

main

17

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

The name of the slow logical volume

Verification steps

® [Examine the newly created devices:

Ivs --all --options +devices vg

LV Pool Type Devices

[fastpool_cpool] cache-pool fastpool_pool_cdata(0)
[fastpool_cpool_cdata] linear /dev/sdf1(4)
[fastpool_cpool_cmeta] linear /dev/sdf1(2)
[Ilvol0_pmspare] linear /dev/sdf1(0)

main [fastpoool_cpool] cache main_corig(0)
[main_corig] linear /dev/sdf1(O)

Additional resources
® The lvcreate(8) man page.
® The lvmcache(7) man page.

® The Ivconvert(8) man page.

13.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL
VOLUME

This procedure enables caching of write |/O operations to a logical volume using the dm-writecache
method.

Prerequisites

® Aslow logical volume that you want to speed up using dm-writecache exists on your system.

® The volume group that contains the slow logical volume also contains an unused physical volume

on a fast block device.
Procedure
1. If the slow logical volume is active, deactivate it:
I # Ivchange --activate n vg/main-Iv

Replace the following values:

vg
The volume group name
main-lv

The name of the slow logical volume

2. Create a deactivated cachevol volume on the fast device:

I # Ivcreate --activate n --size cachevol-size --name fastvol vg /dev/fast-pv

18

CHAPTER 13. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

Replace the following values:

cachevol-size
The size of the cachevol volume, such as 5G
fastvol
A name for the cachevol volume
vg
The volume group name
/dev/fast-pv
The path to the fast block device, such as /dev/sdf1

3. Attach the cachevol volume to the main logical volume to begin caching:
I # Ivconvert --type writecache --cachevol fastvol vg/main-lv

Replace the following values:

fastvol

The name of the cachevol volume
vg

The volume group name
main-lv

The name of the slow logical volume

4. Activate the resulting logical volume:
I # Ivchange --activate y vg/main-Iv

Replace the following values:

vg
The volume group name
main-lv
The name of the slow logical volume

Verification steps

® [Examine the newly created devices:

Ivs --all --options +devices vg

LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert Devices
main-lv vg Cwi-a-C--- 500.00m [fastvol_cvol] [main-lv_wcorig] 0.00

main-lv_wcorig(0)

[fastvol_cvol] vg Cwi-aoC--- 252.00m
/dev/sdc1(0)

[main-lv_wcorig] vg owi-aoC--- 500.00m
/dev/sdb1(0)

19

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

Additional resources

e Forinformation, including administrative examples, see the lvmcache(7) man page.

13.6. DISABLING CACHING FOR A LOGICAL VOLUME

This procedure disables dm-cache or dm-writecache caching that is currently enabled on a logical
volume.

Prerequisites

® Cachingis enabled on a logical volume.

Procedure

1. Deactivate the logical volume:
I # Ivchange --activate n vg/main-Iv

Replace the following values:

vg
The volume group name
main-lv

The name of the logical volume where caching is enabled

2. Detach the cachevol or cachepool volume:
I # Ivconvert --splitcache vg/main-Iv

Replace the following values:

vg
The volume group name
main-lv
The name of the logical volume where caching is enabled

Verification steps

® Check that the logical volumes are no longer attached together:

Ivs --all --options +devices [replaceable]_vg_
LV Attr Type Devices

fastvol -wi------- linear /dev/fast-pv
main-lv -wi------- linear /dev/slow-pv

Additional resources

® The lvmcache(7) man page

120

CHAPTER 14. LOGICAL VOLUME ACTIVATION

CHAPTER 14. LOGICAL VOLUME ACTIVATION

A logical volume that is an active state can be used through a block device. A logical volume that is
activated is accessible and is subject to change. When you create a logical volume it is activated by
default.

There are various circumstances for which you need to make an individual logical volume inactive and
thus unknown to the kernel. You can activate or deactivate individual logical volume with the -a option of

the lvechange command.

The format for the command to deactivate an individual logical volume is as follows.

I Ivchange -an vg/lv

The format for the command to activate an individual logical volume is as follows.
I Ivchange -ay vg/lv

You can and activate or deactivate all of the logical volumes in a volume group with the -a option of the
vgchange command. This is the equivalent of running the Ivehange -a command on each individual
logical volume in the volume group.

The format for the command to deactivate all of the logical volumes in a volume group is as follows.
I vgchange -an vg

The format for the command to activate all of the logical volumes in a volume group is as follows.

I vgchange -ay vg

14.1. CONTROLLING AUTOACTIVATION OF LOGICAL VOLUMES

Autoactivation of a logical volume refers to the event-based automatic activation of a logical volume
during system startup. As devices become available on the system (device online events),
systemd/udev runs the lvm2-pvscan service for each device. This service runs the pvscan --cache -
aay device command, which reads the named device. If the device belongs to a volume group, the
pvscan command will check if all of the physical volumes for that volume group are present on the
system. If so, the command will activate logical volumes in that volume group.

You can use the following configuration options in the /ete/lvm/lvm.conf configuration file to control
autoactivation of logical volumes.

e global/event_activation
When event_activation is disabled, systemd/udev will autoactivate logical volume only on
whichever physical volumes are present during system startup. If all physical volumes have not
appeared yet, then some logical volumes may not be autoactivated.

e activation/auto_activation_volume_list
Setting auto_activation_volume_list to an empty list disables autoactivation entirely. Setting
auto_activation_volume_list to specific logical volumes and volume groups limits
autoactivation to those logical volumes.

For information on setting these options, see the /etc/lvm/lvm.conf configuration file.

121

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

14.2. CONTROLLING LOGICAL VOLUME ACTIVATION
You can control the activation of logical volume in the following ways:
e Through the activation/volume_list setting in the /etc/lvm/conf file. This allows you to specify
which logical volumes are activated. For information on using this option, see the

/etc/lvm/lvm.conf configuration file.

® By means of the activation skip flag for a logical volume. When this flag is set for a logical
volume, the volume is skipped during normal activation commands.

You can set the activation skip flag on a logical volume in the following ways.

® You can turn off the activation skip flag when creating a logical volume by specifying the -kn or
--setactivationskip n option of the lvcreate command.

® You can turn off the activation skip flag for an existing logical volume by specifying the -kn or --
setactivationskip n option of the lvchange command.

® You can turn on the activation skip flag on again for a volume where it has been turned off with
the -ky or --setactivationskip y option of the lvchange command.

To determine whether the activation skip flag is set for a logical volume run the Ivs command, which
displays the k attribute as in the following example.

Ivs vg/thin1s1
LV VG Attr LSize Pool Origin
thin1s1 vg Vwi---tz-k 1.00t pool0 thin1

You can activate a logical volume with the k attribute set by using the -K or --ignoreactivationskip
option in addition to the standard -ay or --activate y option.

By default, thin snapshot volumes are flagged for activation skip when they are created. You can control
the default activation skip setting on new thin snapshot volumes with the auto_set_activation_skip
setting in the /etc/lvm/lvm.conf file.

The following command activates a thin snapshot logical volume that has the activation skip flag set.

I # lvchange -ay -K VG/SnapLV

The following command creates a thin snapshot without the activation skip flag

I # Ivcreate --type thin -n SnapLV -kn -s ThinLV --thinpool VG/ThinPoolLV

The following command removes the activation skip flag from a snapshot logical volume.

I # Ivchange -kn VG/SnapLV

14.3. ACTIVATING SHARED LOGICAL VOLUMES

You can control logical volume activation of a shared logical volume with the -a option of the Ivchange
and vgchange commands, as follows.

122

CHAPTER 14. LOGICAL VOLUME ACTIVATION

Command Activation

Ivchange -ay|e Activate the shared logical volume in exclusive mode, allowing only a
single host to activate the logical volume. If the activation fails, as would
happen if the logical volume is active on another host, an error is
reported.

Ivchange -asy Activate the shared logical volume in shared mode, allowing multiple
hosts to activate the logical volume concurrently. If the activation fails,
as would happen if the logical volume is active exclusively on another
host, an error is reported. If the logical type prohibits shared access,
such as a snapshot, the command will report an error and fail. Logical
volume types that cannot be used concurrently from multiple hosts
include thin, cache, raid, and snapshot.

Ivchange -an Deactivate the logical volume.

14.4. ACTIVATING A LOGICAL VOLUME WITH MISSING DEVICES

You can configure which logical volumes with missing devices are activated by setting the
activation_mode parameter with the Ivehange command to one of the following values.

Activation Mode Meaning

complete Allows only logical volumes with no missing physical volumes to be
activated. This is the most restrictive mode.

degraded Allows RAID logical volumes with missing physical volumes to be
activated.
partial Allows any logical volume with missing physical volumes to be activated.

This option should be used for recovery or repair only.

The default value of activation_mode is determined by the activation_mode setting in the
/etc/lvm/lvm.conf file. For further information, see the lvmraid(7) man page.

123

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

CHAPTER 15. CONTROLLING LVM DEVICE SCANNING

You can control LVM device scanning by configuring filters in the /ete/lvm/lvm.conf file. The filters in
the lvm.conf file consist of a series of simple regular expressions that get applied to the device names in
the /dev directory to decide whether to accept or reject each block device found.

15.1. THE LVM DEVICE FILTER

LVM tools scan for devices in the /dev directory and check every device there for LVM metadata. A
filter in the /etc/lvm/lvm.conf file controls which devices LVM scans.

The filter is a list of patterns that LVM applies to each device found by a scan of the /dev directory, or
the directory specified by the dir keyword in the /etc/lvm/lvm.conf file. Patterns are regular expressions
delimited by any character and preceded by a for accept or r for reject. The first regular expression in
the list that matches a device determines if LVM accepts or rejects (ignores) the device. LVM accepts
devices that do not match any patterns.

The following is the default configuration of the filter, which scans all devices:

I filter = ["a/.*/"]

15.2. EXAMPLES OF LVM DEVICE FILTER CONFIGURATIONS

The following examples show the use of filters to control which devices LVM scans.

' WARNING
A Some of the examples presented here might unintentionally match extra devices on

the system and might not represent recommended practice for your system. For
example, a/loop/ is equivalent to a/.*loop.*/ and would match
/dev/solooperation/lvol1.

e The following filter adds all discovered devices, which is the default behavior because no filter is
configured in the configuration file:

I filter = ["a/.*/"]

® The following filter removes the edrom device in order to avoid delays if the drive contains no
media:

I filter = ["r|"/dev/cdrom$|"]
® The following filter adds all loop devices and removes all other block devices:
I filter = ["a/loop/", "r/.*/"]

® The following filter adds all loop and IDE devices and removes all other block devices:

124

CHAPTER 15. CONTROLLING LVM DEVICE SCANNING

I filter = ["alloop|", "a|/dev/hd.*|", "r|.*|"]

The following filter adds just partition 8 on the first IDE drive and removes all other block
devices:

I filter = ["a|*/dev/hda8$|", "r/.*/"]

15.3. APPLYING AN LVM DEVICE FILTER CONFIGURATION

This procedure changes the configuration of the LVM device filter, which controls the devices that LVM

scans.

Prerequisites

Prepare the device filter pattern that you want to use.

Procedure

1.

Test your device filter pattern without modifying the /etc/lvm/lvm.conf file.
Use an LVM command with the --config 'devices{ filter = [your device filter pattern] }'
option. For example:

I # Ivs --config 'devices{ filter = ["a|/dev/emcpower.*|", "r|.*|"] }

Edit the filter option in the /etc/lvm/lvm.conf configuration file to use your new device filter
pattern.

Check that no physical volumes or volume groups that you want to use are missing with the new
configuration:

I # pvscan

I # vgscan

Rebuild the initramfs file system so that LVM scans only the necessary devices upon reboot:

I # dracut --force --verbose

125

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

CHAPTER16. LAYERING LVM PHYSICAL VOLUMES ON TOP
OF LOGICAL VOLUMES

You can configure LVM so that it is possible to create physical volumes on top of logical volumes.

By default, LVM commands do not scan the logical volumes on your system. This default behavior
provides the following advantages:

e |f there are many active logical volumes on the system, every LVM command would require
additional time, negatively impacting performance and causing unwanted delays or timeouts.

e |f |ogical volumes contain physical volumes from a guest VM image, the host usually does not
want to scan or use those layered physical volumes which belong to the guest. Note, however,
that in the cases where a guest VM'’s physical volume exists directly on an SCSI device visible to
the host, in order to prevent LVM on the host from accessing those physical volumes you will
need to configure a filter, as described in Chapter 15, Controlling LVM device scanning.

Scanning logical volumes may be necessary when layering physical volumes on top of logical volumes is
intentional. This will allow the pvcreate command to be run on a logical volume. To configure LVM to
scan all logical volumes, set the scan_lvs configuration option in the /etc/lvm/lvm.conf file to
scan_lvs=1. To restrict which logical volumes LVM commands scan, you can then set up device filters in
the /etc/lvm/lvm.conf configuration file, as described in Chapter 15, Controlling L\VVM device scanning.

126

CHAPTER 17. CONTROLLING LVM ALLOCATION

CHAPTER 17. CONTROLLING LVM ALLOCATION

By default, a volume group allocates physical extents according to common-sense rules such as not
placing parallel stripes on the same physical volume. This is the normal allocation policy. You can use
the --alloc argument of the vgcreate command to specify an allocation policy of contiguous,
anywhere, or cling. In general, allocation policies other than normal are required only in special cases
where you need to specify unusual or nonstandard extent allocation.

17.1. LVM ALLOCATION POLICIES

When an LVM operation needs to allocate physical extents for one or more logical volumes, the
allocation proceeds as follows:

® The complete set of unallocated physical extents in the volume group is generated for
consideration. If you supply any ranges of physical extents at the end of the command line, only
unallocated physical extents within those ranges on the specified physical volumes are
considered.

® FEach allocation policy is tried in turn, starting with the strictest policy (contiguous) and ending
with the allocation policy specified using the --alloc option or set as the default for the
particular logical volume or volume group. For each policy, working from the lowest-numbered
logical extent of the empty logical volume space that needs to be filled, as much space as
possible is allocated, according to the restrictions imposed by the allocation policy. If more
space is needed, LVM moves on to the next policy.

The allocation policy restrictions are as follows:

® An allocation policy of contiguous requires that the physical location of any logical extent that
is not the first logical extent of a logical volume is adjacent to the physical location of the logical
extent immediately preceding it.
When a logical volume is striped or mirrored, the contiguous allocation restriction is applied
independently to each stripe or mirror image (leg) that needs space.

® An allocation policy of cling requires that the physical volume used for any logical extent be
added to an existing logical volume that is already in use by at least one logical extent earlier in
that logical volume. If the configuration parameter allocation/cling_tag_list is defined, then
two physical volumes are considered to match if any of the listed tags is present on both
physical volumes. This allows groups of physical volumes with similar properties (such as their
physical location) to be tagged and treated as equivalent for allocation purposes.
When a Logical Volume is striped or mirrored, the cling allocation restriction is applied
independently to each stripe or mirror image (leg) that needs space.

® An allocation policy of normal will not choose a physical extent that shares the same physical
volume as a logical extent already allocated to a parallel logical volume (that is, a different stripe
or mirror image/leg) at the same offset within that parallel logical volume.
When allocating a mirror log at the same time as logical volumes to hold the mirror data, an
allocation policy of normal will first try to select different physical volumes for the log and the
data. If that is not possible and the allocation/mirror_logs_require_separate_pvs
configuration parameter is set to O, it will then allow the log to share physical volume(s) with
part of the data.

Similarly, when allocating thin pool metadata, an allocation policy of normal will follow the same

considerations as for allocation of a mirror log, based on the value of the
allocation/thin_pool_metadata_require_separate_pvs configuration parameter.

127

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

e |[f there are sufficient free extents to satisfy an allocation request but a normal allocation policy
would not use them, the anywhere allocation policy will, even if that reduces performance by
placing two stripes on the same physical volume.

The allocation policies can be changed using the vgchange command.

NOTE

If you rely upon any layout behavior beyond that documented in this section according to
the defined allocation policies, you should note that this might change in future versions
of the code. For example, if you supply on the command line two empty physical volumes
that have an identical number of free physical extents available for allocation, LVM
currently considers using each of them in the order they are listed; there is no guarantee
that future releases will maintain that property. If it is important to obtain a specific layout
for a particular Logical Volume, then you should build it up through a sequence of
Ivcreate and Ivconvert steps such that the allocation policies applied to each step leave
LVM no discretion over the layout.

To view the way the allocation process currently works in any specific case, you can read the debug
logging output, for example by adding the -vvvv option to a command.

17.2. PREVENTING ALLOCATION ON A PHYSICAL VOLUME

You can prevent allocation of physical extents on the free space of one or more physical volumes with
the pvechange command. This may be necessary if there are disk errors, or if you will be removing the
physical volume.

The following command disallows the allocation of physical extents on /dev/sdk1.

I # pvchange -x n /dev/sdk1

You can also use the -xy arguments of the pvechange command to allow allocation where it had
previously been disallowed.

17.3. EXTENDING A LOGICAL VOLUME WITH THEcLING ALLOCATION
POLICY

When extending an LVM volume, you can use the --alloc cling option of the lvextend command to
specify the cling allocation policy. This policy will choose space on the same physical volumes as the last
segment of the existing logical volume. If there is insufficient space on the physical volumes and a list of
tags is defined in the /ete/lvm/lvm.conf file, LVM will check whether any of the tags are attached to the

physical volumes and seek to match those physical volume tags between existing extents and new
extents.

For example, if you have logical volumes that are mirrored between two sites within a single volume
group, you can tag the physical volumes according to where they are situated by tagging the physical
volumes with @site1 and @site2 tags. You can then specify the following line in the Ilvm.conf file:

I cling_tag_list = ["@site1", "@site2"]

In the following example, the lvm.conf file has been modified to contain the following line:

I cling_tag_list = ["@A", "@B"]

128

CHAPTER 17. CONTROLLING LVM ALLOCATION

Also in this example, a volume group taft has been created that consists of the physical volumes
/dev/sdb1, /dev/sdci, /dev/sdd1, /dev/sde1, /dev/sdf1, /dev/sdg1, and /dev/sdh1. These physical
volumes have been tagged with tags A, B, and C. The example does not use the C tag, but this will show
that LVM uses the tags to select which physical volumes to use for the mirror legs.

pvs -a -0 +pv_tags /dev/sd[bcdefgh]
PV VG Fmt Attr PSize PFree PV Tags
/dev/sdb1 taft lvm2 a-- 15.00g 15.00g A
/dev/sdc1 taft vm2 a-- 15.00g 15.00g B
/dev/sdd1 taft lvm2 a-- 15.00g 15.00g B
/dev/sde1 taft lvm2 a-- 15.00g 15.00g C
/dev/sdf1 taft lvm2 a-- 15.00g 15.00g C
/dev/sdg1 taft lvm2 a-- 15.00g 15.00g A
/dev/sdh1 taft lvm2 a-- 15.00g 15.00g A

The following command creates a 10 gigabyte mirrored volume from the volume group taft.

Ivcreate --type raid1 -m 1 -n mirror --nosync -L 10G taft
WARNING: New raid1 won't be synchronised. Don't read what you didn't write!
Logical volume "mirror" created

The following command shows which devices are used for the mirror legs and RAID metadata
subvolumes.

Ilvs -a -0 +devices

LV VG Attr LSize Log Cpy%Sync Devices

mirror taft Rwi-a-r--- 10.00g 100.00 mirror_rimage_0(0),mirror_rimage_1(0)
[mirror_rimage_0] taft iwi-aor--- 10.00g /dev/sdb1(1)

[mirror_rimage_ 1] taft iwi-aor--- 10.00g /dev/sdci(1)

[mirror_rmeta_0] taft ewi-aor--- 4.00m /dev/sdb1(0)

[mirror_rmeta_1] taft ewi-aor--- 4.00m /dev/sdc1(0)

The following command extends the size of the mirrored volume, using the cling allocation policy to
indicate that the mirror legs should be extended using physical volumes with the same tag.

Ivextend --alloc cling -L +10G taft/mirror
Extending 2 mirror images.
Extending logical volume mirror to 20.00 GiB
Logical volume mirror successfully resized

The following display command shows that the mirror legs have been extended using physical volumes
with the same tag as the leg. Note that the physical volumes with a tag of C were ignored.

Ilvs -a -0 +devices

LV VG Attr LSize Log Cpy%Sync Devices

mirror taft Rwi-a-r--- 20.00g 100.00 mirror_rimage_0(0),mirror_rimage_1(0)
[mirror_rimage_0] taft iwi-aor--- 20.00g /dev/sdb1(1)

[mirror_rimage_0] taft iwi-aor--- 20.00g /dev/sdg1(0)

[mirror_rimage_ 1] taft iwi-aor--- 20.00g /dev/sdc1(1)

[mirror_rimage_ 1] taft iwi-aor--- 20.00g /dev/sdd1(0)

[mirror_rmeta_0] taft ewi-aor--- 4.00m /dev/sdb1(0)

[mirror_rmeta_1] taft ewi-aor--- 4.00m /dev/sdc1(0)

129

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

17.4. DIFFERENTIATING BETWEEN LVM RAID OBJECTS USING TAGS

You can assign tags to LVM RAID objects to group them, so that you can automate the control of LVM
RAID behavior, such as activation, by group.

The physical volume (PV) tags are responsible for the allocation control in the LVM raid, as opposed to
logical volume (LV) or volume group (VG) tags, because allocation in lvm occurs at the PV level based
on allocation policies. To distinguish storage types by their different properties, tag them appropriately
(e.g. NVMe, SSD, HDD). Red Hat recommends that you tag each new PV appropriately after you add it
toa VG.

This procedure adds object tags to your logical volumes, assuming /dev/sda is an SSD, and /dev/sd[b-f]
are HDDs with one partition.

Prerequisites

® The lvm2 package is installed.

® Storage devices to use as PVs are available.

Procedure

1. Create a volume group.
I # vgcreate MyVG /dev/sd[a-f]1
2. Add tags to your physical volumes.

pvchange --addtag ssds /dev/sdaf

pvchange --addtag hdds /dev/sd[b-f]1
3. Create a RAID6 logical volume.

I # Ivcreate --type raid6 --stripes 3 -L1G -nr6 MyVG @hdds

4. Create alinear cache pool volume.

I # Ivcreate -nrépool -L512m MyVG @ssds

5. Convert the RAID6 volume to be cached.

I # Ivconvert --type cache --cachevol MyVG/r6pool MyVG/r6

Additional resources

® The lvcreate(8), Ivconvert(8), Ivmraid(7) and lvmcache(7) man pages.

130

CHAPTER 18. GROUPING LVM OBJECTS WITH TAGS

CHAPTER 18. GROUPING LVM OBJECTS WITH TAGS

As a system administrator, you can assign tags to LVM objects to group them, so that you can automate
the control of LVM behavior, such as activation, by group.

18.1. LVM OBJECT TAGS

An LVM tagis a word that is used to group LVM2 objects of the same type together. Tags are attached
to objects such as physical volumes, volume groups, and logical volumes, as well as to hosts in a cluster
configuration.

Tags are given on the command line in place of PV, VG or LV arguments. Tags should be prefixed with @
to avoid ambiguity. Each tag is expanded by replacing it with all objects possessing that tag which are of
the type expected by its position on the command line.

LVM tags are strings of up to 1024 characters. LVM tags cannot start with a hyphen.

A valid tag consists of a limited range of characters only. The allowed characters are A-Za-z0-9 _ +.-/
=1:#&

Only objects in a volume group can be tagged. Physical volumes lose their tags if they are removed from
a volume group; this is because tags are stored as part of the volume group metadata and that is
deleted when a physical volume is removed.

18.2. LISTING LVM TAGS

The following example shows how to list LVM tags.

Procedure

e Use the following command to list all the logical volumes with the database tag:
I # Ilvs @database
® Use the following command to list the currently active host tags:

I # lvm tags

18.3. ADDING LVM OBJECT TAGS

This procedure describes how to add LVM object tags.

Prerequisites

® The lvm2 package is installed.

® One or more physical volumes, volume groups, or logical volumes are created.

Procedure
® To create an object tag, add the --addtag option to an LVM command:

o To create tags from physical volumes, add the option to the pvechange command.

131

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

o To create tags from volume groups, add the option to the vgchange or vgcreate
commands.

o To create tags from logical volumes, add the option to the Ivchange or Ivcreate
commands.

18.4. REMOVING LVM OBJECT TAGS

This procedure describes how to remove LVM object tags.

Prerequisites

® The lvm2 package is installed.

® Object tags on physical volumes, volume groups, or logical volumes are created.

Procedure
® To delete an object tag, add the --deltag option to an LVM command:

o To delete tags from physical volumes, add the option to the pvchange command.

o To delete tags from volume groups, add the option to the vgchange or vgcreate
commands.

o To delete tags from logical volumes, add the option to the Ivchange or Ivcreate
commands.

18.5. DEFINING LVM HOST TAGS

This procedure describes how to define LVM host tags in a cluster configuration. You can define host
tags in the configuration files.

Procedure

e Set hosttags = 1in the tags section to automatically define host tag using the machine’s host
name.
This allows you to use a common configuration file which can be replicated on all your machines
so they hold identical copies of the file, but the behavior can differ between machines according
to the host name.

For each host tag, an extra configuration file is read if it exists: lIvm_hosttag.conf. If that file defines new
tags, then further configuration files will be appended to the list of files to read in.

For example, the following entry in the configuration file always defines tag1, and defines tag?2 if the
host name is host1:

I tags { tag1 {} tag2 { host_list = ["host1"] } }

18.6. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

This procedure describes how to specify in the configuration file that only certain logical volumes should
be activated on that host.

132

CHAPTER 18. GROUPING LVM OBJECTS WITH TAGS

Prerequisites

® A bulleted list of conditions that must be satisfied before the user starts following this assembly.

® You can also link to other modules or assemblies the user must follow before starting this
assembly.

® Delete the section title and bullets if the assembly has no prerequisites.

Procedure

For example, the following entry acts as a filter for activation requests (such as vgchange -ay) and only
activates vg1/lvol0 and any logical volumes or volume groups with the database tagin the metadata on
that host:

I activation { volume_list = ["vg1/Ivol0", "@database"] }

The special match @* that causes a match only if any metadata tag matches any host tag on that
machine.

As another example, consider a situation where every machine in the cluster has the following entry in
the configuration file:

I tags { hosttags = 1 }
If you want to activate vg1/Ilvol2 only on host db2, do the following:
1. Run Ivchange --addtag @db2 vg1/lvol2 from any host in the cluster.

2. Run Ivchange -ay vgi/lvol2.

This solution involves storing host names inside the volume group metadata.

133

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

CHAPTER 19. TROUBLESHOOTING LVM

You can use LVM tools to troubleshoot a variety of issues in LVM volumes and groups.

19.1. GATHERING DIAGNOSTIC DATA ON LVM

If an LVM command is not working as expected, you can gather diagnostics in the following ways.

Procedure

134

e Use the following methods to gather different kinds of diagnostic data:

o

Add the -vvvv argument to any LVM command to increase the verbosity level of the
command output.
In the log section of the /ete/lvm/lvm.conf configuration file, increase the value of the level
option. This causes LVM to provide more details in the system log.
If the problem is related to the logical volume activation, enable LVM to log messages
during the activation:
i. Set the activation =1 option in the log section of the /etc/lvm/lvm.conf configuration
file.
ii. Runthe LVM command with the -vvvv option.
iii. Examine the command output.
iv. Reset the activation option to 0.
If you do not reset the option to 0, the system might become unresponsive during low
memory situations.
Display an information dump for diagnostic purposes:
I # lvmdump
Display additional system information:
I #lvs -v
I # pvs --all

I # dmsetup info --columns

Examine the last backup of the LVM metadata in the /etc/lvm/backup/ directory and
archived versions in the /etc/lvm/archive/ directory.

Check the current configuration information:

I # lvmconfig

Check the /run/lvm/hints cache file for a record of which devices have physical volumes on
them.

CHAPTER 19. TROUBLESHOOTING LVM

Additional resources

® The lvmdump(8) man page

19.2. DISPLAYING INFORMATION ON FAILED LVM DEVICES

You can display information about a failed LVM volume that can help you determine why the volume
failed.

Procedure

® Display the failed volumes using the vgs or Ivs utility.

Example 19.1. Failed volume groups

In this example, one of the devices that made up the volume group vg failed. The volume
group is unusable but you can see information about the failed device.

vgs --options +devices

/dev/sdb: open failed: No such device or address

/dev/sdb: open failed: No such device or address

WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fi0O9-
z1lf4s.

WARNING: VG vg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fi09-z11f4s (last
written to /dev/sdb1).

WARNING: Couldn't find all devices for LV vg/linear while checking used and assumed
devices.

WARNING: Couldn't find all devices for LV vg/stripe while checking used and assumed
devices.

VG #PV #LV #SN Attr VSize VFree Devices

vg 2 2 0wz-pn-<3.64t <3.60t [unknown](0)

vg 2 2 0wz-pn- <3.64t <3.60t [unknown](5120),/dev/sdc1(0)

Example 19.2. Failed linear and striped LV

In this example, the failed device caused both a linear and a striped logical volume in the
volume group to fail. The command output shows the failed logical volumes.

Ivs --all --options +devices

/dev/sdb: open failed: No such device or address

/dev/sdb: open failed: No such device or address

WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fi0O9-
z1lf4s.

WARNING: VG vg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fi09-z11f4s (last
written to /dev/sdb1).

WARNING: Couldn't find all devices for LV vg/linear while checking used and assumed

devices.

WARNING: Couldn't find all devices for LV vg/stripe while checking used and assumed
devices.

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
Devices

135

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

linear vg -wi-a---p- 20.00g [unknown](0)
stripe vg -wi-a---p- 20.00g [unknown]
(5120),/dev/sdc1(0)

Example 19.3. Failed leg of a mirrored logical volume

The following examples show the command output from the vgs and lvs utilities when a leg
of a mirrored logical volume has failed.

vgs --all --options +devices
VG #PV #LV #SN Attr VSize VFree Devices
corey 44 0 rz-pnc 1.58T 1.34T my_mirror_mimage_0(0),my_mirror_mimage_1(0)
corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdd1(0)

corey 4 4 0 rz-pnc 1.58T 1.34T unknown device(0)
corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdb1(0)

Ivs --all --options +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
my_mirror corey mwi-a- 120.00G my_mirror_mlog 1.95
my_mirror_mimage_0(0),my_mirror_mimage_1(0)
[my_mirror_mimage_0] corey iwi-ao 120.00G unknown device(0)

[my_mirror_mimage_1] corey iwi-ao 120.00G /dev/sdb1(0)
[my_mirror_mlog] corey Iwi-ao 4.00M /dev/sdd1(0)

19.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME
GROUP

If a physical volume fails, you can activate the remaining physical volumes in the volume group and
remove all the logical volumes that used that physical volume from the volume group.

Procedure

1. Activate the remaining physical volumes in the volume group:

I # vgchange --activate y --partial volume-group
2. Check which logical volumes will be removed:

I # vgreduce --removemissing --test volume-group

3. Remove all the logical volumes that used the lost physical volume from the volume group:

I # vgreduce --removemissing --force volume-group

4. Optional: If you accidentally removed logical volumes that you wanted to keep, you can reverse
the vgreduce operation:

136

CHAPTER 19. TROUBLESHOOTING LVM

I # vgcfgrestore volume-group

' WARNING
A If you removed a thin pool, LVM cannot reverse the operation.

19.4. RECOVERING AN LVM PHYSICAL VOLUME WITH DAMAGED
METADATA

If the volume group metadata area of a physical volume is accidentally overwritten or otherwise
destroyed, you get an error message indicating that the metadata area is incorrect, or that the system
was unable to find a physical volume with a particular UUID. You might be able to recover the data from
the physical volume by rewriting the metadata area on the physical volume.

19.4.1. Discovering that an LVM volume has missing or corrupted metadata

The following example shows the command output you might see if the metadata area on a physical
volume is missing or corrupted.

Procedure

® Try to list the logical volumes:

I # Ivs --all --options +devices

Example 19.4. Output with missing or corrupted metadata

In this example, certain logical volumes are located on a physical volume that has missing or
corrupted metadata.

Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5SK'.
Couldn't find all physical volumes for volume group VG.
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5SK'.
Couldn't find all physical volumes for volume group VG.

19.4.2. Finding the metadata of a missing LVM physical volume

This procedure finds the latest archived metadata of a physical volume that is missing or corrupted.

Procedure

1. Find the archived metadata file of the volume group that contains the physical volume.
The archived metadata files are located at the /etc/lvm/archive/volume-group-name_backup-
number.vg path. Select the last known valid metadata file, which has the highest number for the
volume group.

137

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

2. Find the UUID of the physical volume. Use one of the following methods.

® |istthe logical volumes:

Ivs --all --options +devices

Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5SK.

® Examine the archived metadata file. Find the UUID as the value labeled id = in the
physical_volumes section of the volume group configuration.

® Deactivate the volume group using the --partial option:

vgchange --activate n --partial volume-group-name

PARTIAL MODE. Incomplete logical volumes will be processed.

WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-
z1If4s.

WARNING: VG raid_sanity is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fi09-z1If4s
(last written to /dev/sdb1).

0 logical volume(s) in volume group "raid_sanity" now active

19.4.3. Restoring metadata on an LVM physical volume

This procedure restores metadata on a physical volume that is either corrupted or replaced with a new
device.

' WARNING
A Do not attempt this procedure on a working LVM logical volume. You will lose your

data if you specify the incorrect UUID.

Prerequisites

® You have identified the metadata of the missing physical volume. For details, see Section 19.4.2,
“Finding the metadata of a missing LVM physical volume”.

Procedure
1. Restore the metadata on the physical volume:
pvcreate --uuid physical-volume-uuid\

--restorefile /etc/lvm/archive/volume-group-name_backup-number.vg \
block-device

NOTE

The command overwrites only the LVM metadata areas and does not affect the
existing data areas.

138

CHAPTER 19. TROUBLESHOOTING LVM

Example 19.5. Restoring a physical volume on /dev/sdhi

The following example labels the /dev/sdh1 device as a physical volume with the following
properties:

® The UUID of FMGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk

® The metadata information contained in VG_00050.vg, which is the most recent good
archived metadata for the volume group

--restorefile /etc/lvm/archive/VG_00050.vg \

pvcreate --uuid "FmGRh3-zhok-iVI8-7gTD-S5BI-MAEN-NYM5SK" \
/dev/sdh1

Physical volume "/dev/sdh1" successfully created

2. Restore the metadata of the volume group:
vgcfgrestore volume-group-name
Restored volume group volume-group-name
3. Display the logical volumes on the volume group:
I # Ivs --all --options +devices volume-group-name

The logical volumes are currently inactive. For example:

LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi--- 300.00G /dev/sdh1 (0),/dev/sda1(0)
stripe VG -wi--- 300.00G /dev/sdh1 (34728),/dev/sdb1(0)

4. If the segment type of the logical volumes is RAID or mirror, resynchronize the logical volumes:
I # lvchange --resync volume-group-name/logical-volume-name
5. Activate the logical volumes:

I # lvchange --activate y /dev/volume-group-namellogical-volume-name

6. If the on-disk LVM metadata takes at least as much space as what overrode it, this procedure
can recover the physical volume. If what overrode the metadata went past the metadata area,
the data on the volume may have been affected. You might be able to use the fsck command to
recover that data.

Verification steps

® Display the active logical volumes:

I # Ivs --all --options +devices

139

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi-a- 300.00G /dev/sdh1 (0),/dev/sdai(0)
stripe VG -wi-a- 300.00G /dev/sdh1 (34728),/dev/sdb1(0)

19.5. REPLACING A MISSING LVM PHYSICAL VOLUME

If a physical volume fails or otherwise needs to be replaced, you can label a new physical volume to
replace the one that has been lost in the existing volume group.

Prerequisites
® You have replaced the physical volume with a new storage device.
TODO: Reevaluate the placement of this step.
19.5.1. Finding the metadata of a missing LVM physical volume

This procedure finds the latest archived metadata of a physical volume that is missing or corrupted.

Procedure

1. Find the archived metadata file of the volume group that contains the physical volume.
The archived metadata files are located at the /etc/lvm/archive/volume-group-name_backup-
number.vg path. Select the last known valid metadata file, which has the highest number for the
volume group.

2. Find the UUID of the physical volume. Use one of the following methods.

® |istthe logical volumes:

Ivs --all --options +devices

Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5SK.

® Examine the archived metadata file. Find the UUID as the value labeled id = in the
physical_volumes section of the volume group configuration.

® Deactivate the volume group using the --partial option:

vgchange --activate n --partial volume-group-name

PARTIAL MODE. Incomplete logical volumes will be processed.

WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-
z1If4s.

WARNING: VG raid_sanity is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fi09-z1If4s
(last written to /dev/sdb1).

0 logical volume(s) in volume group "raid_sanity" now active

19.5.2. Restoring metadata on an LVM physical volume

This procedure restores metadata on a physical volume that is either corrupted or replaced with a new
device.

140

CHAPTER 19. TROUBLESHOOTING LVM

' WARNING
A Do not attempt this procedure on a working LVM logical volume. You will lose your

data if you specify the incorrect UUID.

Prerequisites

® You have identified the metadata of the missing physical volume. For details, see Section 19.5.],
“Finding the metadata of a missing LVM physical volume”.

Procedure

1. Restore the metadata on the physical volume:

pvcreate --uuid physical-volume-uuid \
--restorefile /etc/lvm/archive/volume-group-name_backup-number.vg \
block-device

NOTE

The command overwrites only the LVM metadata areas and does not affect the
existing data areas.

Example 19.6. Restoring a physical volume on /dev/sdh1

The following example labels the /dev/sdh1 device as a physical volume with the following
properties:

® The UUID of FMGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk

® The metadata information contained in VG_00050.vg, which is the most recent good
archived metadata for the volume group

pvcreate --uuid "FmGRh3-zhok-iV18-7qTD-S5BI-MAEN-NYM5Sk" \
--restorefile /etc/lvm/archive/VG_00050.vg \
/dev/sdh1

Physical volume "/dev/sdh1" successfully created

2. Restore the metadata of the volume group:

vgcfgrestore volume-group-name

Restored volume group volume-group-name

3. Display the logical volumes on the volume group:

141

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

I # Ivs --all --options +devices volume-group-name

The logical volumes are currently inactive. For example:

LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi--- 300.00G /dev/sdh1 (0),/dev/sda1(0)
stripe VG -wi--- 300.00G /dev/sdh1 (34728),/dev/sdb1(0)

4. If the segment type of the logical volumes is RAID or mirror, resynchronize the logical volumes:

I # Ivchange --resync volume-group-name!logical-volume-name

5. Activate the logical volumes:

I # Ivchange --activate y /dev/volume-group-namellogical-volume-name

6. If the on-disk LVM metadata takes at least as much space as what overrode it, this procedure

can recover the physical volume. If what overrode the metadata went past the metadata area,
the data on the volume may have been affected. You might be able to use the fsck command to
recover that data.

Verification steps

® Display the active logical volumes:

Ivs --all --options +devices

LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi-a- 300.00G /dev/sdh1 (0),/dev/sdai(0)
stripe VG -wi-a- 300.00G /dev/sdh1 (34728),/dev/sdb1(0)

19.6. TROUBLESHOOTING LVM RAID

You can troubleshoot various issues in LVM RAID devices to correct data errors, recover devices, or
replace failed devices.

19.6.1. Checking data coherency in a RAID logical volume (RAID scrubbing)

LVM provides scrubbing support for RAID logical volumes. RAID scrubbing is the process of reading all
the data and parity blocks in an array and checking to see whether they are coherent.

Procedure

142

1. Optional: Limit the I/O bandwidth that the scrubbing process uses.

When you perform a RAID scrubbing operation, the background I/O required by the sync
operations can crowd out other I/O to LVM devices, such as updates to volume group metadata.
This might cause the other LVM operations to slow down. You can control the rate of the
scrubbing operation by implementing recovery throttling.

Add the following options to the lvchange --syncaction commands in the next steps:

--maxrecoveryrate Rate[bBsSkKmMgG]

CHAPTER 19. TROUBLESHOOTING LVM

Sets the maximum recovery rate so that the operation does crowd out nominal I/O
operations. Setting the recovery rate to O means that the operation is unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate to ensure that I/O for sync operations achieves a minimum
throughput, even when heavy nominal I/O is present.

Specify the Rate value as an amount per second for each device in the array. If you provide no
suffix, the options assume kiB per second per device.

2. Display the number of discrepancies in the array, without repairing them:

I # lvchange --syncaction check vg/raid_Iv

3. Correct the discrepancies in the array:

I # Ivchange --syncaction repair vg/raid_Iv

NOTE

The Ivchange --syncaction repair operation does not perform the same
function as the Ivconvert --repair operation:

® The Ivchange --syncaction repair operation initiates a background
synchronization operation on the array.

e The Ilvconvert --repair operation repairs or replaces failed devices in a mirror
or RAID logical volume.

4. Optional: Display information about the scrubbing operation:
I # Ivs -0 +raid_sync_action,raid_mismatch_count vg/lv

e The raid_sync_action field displays the current synchronization operation that the RAID
volume is performing. It can be one of the following values:
idle

All sync operations complete (doing nothing)
resync
Initializing an array or recovering after a machine failure
recover
Replacing a device in the array
check
Looking for array inconsistencies
repair

Looking for and repairing inconsistencies

® The raid_mismatch_count field displays the number of discrepancies found during a
check operation.

® The Cpy%Sync field displays the progress of the sync operations.

143

Red Hat Enterprise Linux 8 Configuring and managing logical volumes
e The Iv_attr field provides additional indicators. Bit 9 of this field displays the health of the
logical volume, and it supports the following indicators:

o m (mismatches) indicates that there are discrepancies in a RAID logical volume. This
character is shown after a scrubbing operation has detected that portions of the RAID
are not coherent.

o r(refresh) indicates that a device in a RAID array has suffered a failure and the kernel
regards it as failed, even though LVM can read the device label and considers the
device to be operational. Refresh the logical volume to notify the kernel that the device
is now available, or replace the device if you suspect that it failed.

Additional resources

® For more information, see the Ivehange(8) and Ivmraid(7) man pages.

19.6.2. Failed devices in LVM RAID

RAID is not like traditional LVM mirroring. LVM mirroring required failed devices to be removed or the
mirrored logical volume would hang. RAID arrays can keep on running with failed devices. In fact, for
RAID types other than RAID1, removing a device would mean converting to a lower level RAID (for
example, from RAID6 to RAID5, or from RAID4 or RAID5 to RAIDO).

Therefore, rather than removing a failed device unconditionally and potentially allocating a replacement,

LVM allows you to replace a failed device in a RAID volume in a one-step solution by using the --repair
argument of the lveconvert command.

19.6.3. Recovering a failed RAID device in a logical volume

If the LVM RAID device failure is a transient failure or you are able to repair the device that failed, you
can initiate recovery of the failed device.

Prerequisites

® The previously failed device is now working.

Procedure

® Refresh the logical volume that contains the RAID device:

I # Ivchange --refresh my_vg/my_Iv

Verification steps

® Examine the logical volume with the recovered device:

I # Ivs --all --options name,devices,lv_attr,Iv_health_status my vg

19.6.4. Replacing a failed RAID device in a logical volume

This procedure replaces a failed device that serves as a physical volume in an LVM RAID logical volume.

Prerequisites

144

CHAPTER 19. TROUBLESHOOTING LVM

® The volume group includes a physical volume that provides enough free capacity to replace the
failed device.
If no physical volume with sufficient free extents is available on the volume group, add a new,
sufficiently large physical volume using the vgextend utility.

Procedure

1. In the following example, a RAID logical volume is laid out as follows:

Ivs --all --options name,copy_percent,devices my_vg

LV Cpy%Sync Devices

my_lIv 100.00 my_lIv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde1(1)

[my_Iv_rimage_1] /dev/sdci(1)

[my_Iv_rimage_2] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sde1(0)

[my_Iv_rmeta_1] /dev/sdc1(0)

[my_Iv_rmeta_2] /dev/sdd1(0)

2. If the /dev/sdc device fails, the output of the Ivs command is as follows:

Ivs --all --options name,copy_percent,devices my_vg

/dev/sdc: open failed: No such device or address

Couldn't find device with uuid A4kRI2-vIzA-uyCb-cci7-bOod-H5tX-1zH4Ee.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rimage_1 while checking used and
assumed devices.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rmeta_1 while checking used and
assumed devices.

LV Cpy%Sync Devices

my_lIv 100.00 my_lIv_rimage_0(0),my_Iv_rimage_1(0),my_lIv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde1(1)

[my_Iv_rimage_1] [unknown](1)

[my_Iv_rimage_2] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sde1(0)

[my_Iv_rmeta_1] [unknown](0)

[my_Iv_rmeta_2] /dev/sdd1(0)

3. Replace the failed device and display the logical volume:

Ivconvert --repair my_vg/my_Iv

/dev/sdc: open failed: No such device or address

Couldn't find device with uuid A4kRI2-vIzA-uyCb-cci7-bOod-H5tX-1zH4Ee.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rimage_1 while checking used and
assumed devices.

WARNING: Couldn't find all devices for LV my_vg/my_Iv_rmeta_1 while checking used and
assumed devices.
Attempt to replace failed RAID images (requires full device resync)? [y/n]: y

Faulty devices in my_vg/my_Iv successfully replaced.

Optional: To manually specify the physical volume that replaces the failed device, add the
physical volume at the end of the command:

145

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

I # Ivconvert --repair my_vg/my_Iv replacement_pv

4. Examine the logical volume with the replacement:

Ivs --all --options name,copy_percent,devices my_vg

/dev/sdc: open failed: No such device or address

/dev/sdc1: open failed: No such device or address

Couldn't find device with uuid A4kRI2-vIzA-uyCb-cci7-bOod-H5tX-1zH4Ee.

LV Cpy%Sync Devices

my_Iv 43.79 my_lv_rimage_0(0),my_Iv_rimage_1(0),my_Iv_rimage_2(0)
[my_Iv_rimage_0] /dev/sde1(1)

[my_Iv_rimage_1] /dev/sdb1(1)

[my_Iv_rimage_2] /dev/sdd1(1)

[my_Iv_rmeta_0] /dev/sde1(0)
[my_Iv_rmeta_1] /dev/sdb1(0)
[my_Iv_rmeta_2] /dev/sdd1(0)

Until you remove the failed device from the volume group, LVM utilities still indicate that LVM
cannot find the failed device.

5. Remove the failed device from the volume group:

I # vgreduce --removemissing VG

19.7. TROUBLESHOOTING INSUFFICIENT FREE EXTENTS FOR A
LOGICAL VOLUME

You might get the Insufficient free extents error message when attempting to create a logical volume,
even when you think that the volume group has enough free space. You can troubleshoot this error to
be able to create a logical volume on the volume group.

19.7.1. Volume groups

Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out of which
logical volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size called
extents. An extent is the smallest unit of space that can be allocated. Within a physical volume, extents
are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent size
is thus the same for all logical volumes in the volume group. The volume group maps the logical extents
to physical extents.

19.7.2. Rounding errors in LVM output

LVM commands that report the space usage in volume groups round the reported number to 2 decimal
places to provide human-readable output. This includes the vgdisplay and vgs utilities.

As a result of the rounding, the reported value of free space might be larger than what the physical
extents on the volume group provide. If you attempt to create a logical volume the size of the reported
free space, you might get the following error:

146

CHAPTER 19. TROUBLESHOOTING LVM

I Insufficient free extents

To work around the error, you must examine the number of free physical extents on the volume group,
which is the accurate value of free space. You can then use the number of extents to create the logical
volume successfully.

19.7.3. Preventing the rounding error when creating an LVM volume

When creating an LVM logical volume, you can specify the size of the logical volume so that no rounding
error occurs.

Procedure
1. Find the number of free physical extents in the volume group:
I # vgdisplay volume-group-name

Example 19.7. Free extents in a volume group

For example, the following volume group has 8780 free physical extents:

| --- Volume group ---

Free PE/ Size 8780 /34.30 GB

2. Create the logical volume. Enter the volume size in extents rather than bytes.

Example 19.8. Creating a logical volume by specifying the number of extents

I # Ivcreate --extents 8780 --name testlv testvg

Example 19.9. Creating a logical volume to occupy all the remaining space

Alternately, you can extend the logical volume to use a percentage of the remaining free
space in the volume group. For example:

I # Ivcreate --extents 100%FREE --name testlv2 testvg

Verification steps

® Check the number of extents that the volume group now uses:

vgs --options +vg_free_count,vg_extent_count

VG #PV #LV #SN Attr VSize VFree Free #Ext
testvyg 2 1 Owz--n-3430G 0 08780

147

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

19.8. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME
WARNINGS FOR MULTIPATHED LVM DEVICES

When using LVM with multipathed storage, LVM commands that list a volume group or logical volume
might display messages such as the following:

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/dm-5 not /dev/sdd
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/emcpowerb not /dev/sde
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/sddimab not /dev/sdf

You can troubleshoot these warnings to understand why LVM displays them, or to hide the warnings.

19.8.1. Root cause of duplicate PV warnings

When a multipath software such as Device Mapper Multipath (DM Multipath), EMC PowerPath, or
Hitachi Dynamic Link Manager (HDLM) manages storage devices on the system, each path to a
particular logical unit (LUN) is registered as a different SCSI device. The multipath software then
creates a new device that maps to those individual paths. Because each LUN has multiple device nodes
in the /dev directory that point to the same underlying data, all the device nodes contain the same LVM
metadata.

Table 19.1. Example device mappings in different multipath software

Multipath software SCSI paths to a LUN Multipath device mapping to
paths

DM Multipath /dev/sdb and /dev/sdc /dev/imapper/mpath1 or
/dev/imapper/mpatha

EMC PowerPath /dev/iemcpowera

HDLM /dev/sddimab

As a result of the multiple device nodes, LVM tools find the same metadata multiple times and report
them as duplicates.

19.8.2. Cases of duplicate PV warnings

LVM displays the duplicate PV warnings in either of the following cases:
® The two devices displayed in the output are both single paths to the same device.
® The two devices displayed in the output are both multipath maps.

Single paths to the same device

The following example shows a duplicate PV warning in which the duplicate devices are both single
paths to the same device.

I Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/sdd not /dev/sdf

If you list the current DM Multipath topology using the multipath -Il command, you can find both
/dev/sdd and /dev/sdf under the same multipath map.

148

CHAPTER 19. TROUBLESHOOTING LVM

These duplicate messages are only warnings and do not mean that the LVM operation has failed. Rather,
they are alerting you that LVM uses only one of the devices as a physical volume and ignores the others.

If the messages indicate that LVM chooses the incorrect device or if the warnings are disruptive to
users, you can apply a filter. The filter configures LVM to search only the necessary devices for physical
volumes, and to leave out any underlying paths to multipath devices. As a result, the warnings no longer
appear.

Multipath maps

The following examples show a duplicate PV warning for two devices that are both multipath maps. The
duplicate physical volumes are located on two different devices rather than on two different paths to
the same device.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/mapper/mpatha not
/dev/mapper/mpathc

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/emcpowera not
/dev/emcpowerh

This situation is more serious than duplicate warnings for devices that are both single paths to the same

device. These warnings often mean that the machine is accessing devices that it should not access: for
example, LUN clones or mirrors.

Unless you clearly know which devices you should remove from the machine, this situation might be
unrecoverable. Red Hat recommends that you contact Red Hat Technical Support to address this issue.

19.8.3. The LVM device filter

LVM tools scan for devices in the /dev directory and check every device there for LVM metadata. A
filter in the /etc/lvm/lvm.conf file controls which devices LVM scans.

The filter is a list of patterns that LVM applies to each device found by a scan of the /dev directory, or
the directory specified by the dir keyword in the /etc/lvm/lvm.conf file. Patterns are regular expressions
delimited by any character and preceded by a for accept or r for reject. The first regular expression in
the list that matches a device determines if LVM accepts or rejects (ignores) the device. LVM accepts
devices that do not match any patterns.

The following is the default configuration of the filter, which scans all devices:

I filter = ["a/.*/"]

19.8.4. Example LVM device filters that prevent duplicate PV warnings

The following examples show LVM device filters that avoid the duplicate physical volume warnings that
are caused by multiple storage paths to a single logical unit (LUN).

The filter that you configure must include all devices that LVM needs to be check for metadata, such as
the local hard drive with the root volume group on it and any multipathed devices. By rejecting the
underlying paths to a multipath device (such as /dev/sdb, /dev/sdd, and so on), you can avoid these
duplicate PV warnings, because LVM finds each unique metadata area once on the multipath device
itself.

e This filter accepts the second partition on the first hard drive and any DM Multipath devices, but
rejects everything else:

149

Red Hat Enterprise Linux 8 Configuring and managing logical volumes

I filter = ["al/dev/sda2$|", "a|/dev/mapper/mpath.*|", "r|.*|"]

® This filter accepts all HP SmartArray controllers and any EMC PowerPath devices:
I filter = ["al/dev/cciss/.*|", "al/dev/iemcpower.*|", "r|.*|"]

e This filter accepts any partitions on the first IDE drive and any multipath devices:

I filter = ["al/dev/hda.*|", "al/dev/mapper/mpath.*|", "r|.*|"]

19.8.5. Applying an LVM device filter configuration

This procedure changes the configuration of the LVM device filter, which controls the devices that LVM
scans.

Prerequisites

® Prepare the device filter pattern that you want to use.

Procedure

1. Test your device filter pattern without modifying the /etc/lvm/lvm.conf file.
Use an LVM command with the --config 'devices{ filter = [your device filter pattern] }'
option. For example:

I # Ivs --config 'devices({ filter = ["a|/dev/emcpower.*|", "r|.*|"] }'

2. Edit the filter option in the /etc/lvm/lvm.conf configuration file to use your new device filter
pattern.

3. Check that no physical volumes or volume groups that you want to use are missing with the new
configuration:

I # pvscan

I # vgscan

4. Rebuild the initramfs file system so that LVM scans only the necessary devices upon reboot:

I # dracut --force --verbose

19.8.6. Additional resources

® Chapter 15, Controlling LVM device scanning

150

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. LOGICAL VOLUMES
	1.1. LVM ARCHITECTURE OVERVIEW
	1.2. PHYSICAL VOLUMES
	1.2.1. LVM physical volume layout
	1.2.2. Multiple partitions on a disk

	1.3. VOLUME GROUPS
	1.4. LVM LOGICAL VOLUMES
	1.4.1. Linear Volumes
	1.4.2. Striped Logical Volumes
	1.4.3. RAID logical volumes
	1.4.4. Thinly-provisioned logical volumes (thin volumes)
	1.4.5. Snapshot Volumes
	1.4.6. Thinly-provisioned snapshot volumes
	1.4.7. Cache Volumes

	CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES
	2.1. INTRODUCTION TO THE STORAGE ROLE
	2.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE STORAGE SYSTEM ROLE
	2.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM ON A BLOCK DEVICE
	2.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A FILE SYSTEM
	2.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES
	2.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK DISCARD
	2.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT4 FILE SYSTEM
	2.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT3 FILE SYSTEM
	2.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING EXT4 OR EXT3 FILE SYSTEM USING THE STORAGE RHEL SYSTEM ROLE
	2.10. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE SYSTEM ON LVM USING THE STORAGE RHEL SYSTEM ROLE
	2.11. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP PARTITION USING THE STORAGE RHEL SYSTEM ROLE
	2.12. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM ROLE
	2.13. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE SYSTEM ROLE
	2.14. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE ROLE
	2.15. ADDITIONAL RESOURCES

	CHAPTER 3. DEPLOYING LVM
	3.1. CREATING LVM PHYSICAL VOLUME
	3.2. CREATING LVM VOLUME GROUP
	3.3. CREATING LVM LOGICAL VOLUME

	CHAPTER 4. CONFIGURING LVM LOGICAL VOLUMES
	4.1. USING CLI COMMANDS
	Specifying units in a command line argument
	Specifying volume groups and logical volumes
	Increasing output verbosity
	Displaying help for LVM CLI commands

	4.2. CREATING AN LVM LOGICAL VOLUME ON THREE DISKS
	4.3. CREATING A RAID0 (STRIPED) LOGICAL VOLUME
	4.4. RENAMING LVM LOGICAL VOLUMES
	4.5. REMOVING A DISK FROM A LOGICAL VOLUME
	4.5.1. Moving extents to existing physical volumes
	4.5.2. Moving Extents to a New Disk

	4.6. CONFIGURING PERSISTENT DEVICE NUMBERS
	4.7. SPECIFYING LVM EXTENT SIZE
	4.8. MANAGING LVM LOGICAL VOLUMES USING RHEL SYSTEM ROLES
	4.8.1. Example Ansible playbook to manage logical volumes
	4.8.2. Additional resources

	4.9. REMOVING LVM LOGICAL VOLUMES

	CHAPTER 5. MODIFYING THE SIZE OF A LOGICAL VOLUME
	5.1. GROWING LOGICAL VOLUMES
	5.2. GROWING A FILE SYSTEM ON A LOGICAL VOLUME
	5.3. SHRINKING LOGICAL VOLUMES
	5.4. EXTENDING A STRIPED LOGICAL VOLUME

	CHAPTER 6. MANAGING LVM VOLUME GROUPS
	6.1. VOLUME GROUPS
	6.2. DISPLAYING VOLUME GROUPS
	6.3. COMBINING VOLUME GROUPS
	6.4. SPLITTING A VOLUME GROUP
	6.5. RENAMING LVM VOLUME GROUPS
	6.6. MOVING A VOLUME GROUP TO ANOTHER SYSTEM
	6.7. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP
	6.8. REMOVING LVM VOLUME GROUPS
	6.9. ADDITIONAL RESOURCES

	CHAPTER 7. MANAGING LVM PHYSICAL VOLUMES
	7.1. SCANNING FOR BLOCK DEVICES TO USE AS PHYSICAL VOLUMES
	7.2. SETTING THE PARTITION TYPE FOR A PHYSICAL VOLUME
	7.3. RESIZING AN LVM PHYSICAL VOLUME
	7.4. REMOVING PHYSICAL VOLUMES
	7.5. ADDING PHYSICAL VOLUMES TO A VOLUME GROUP
	7.6. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP

	CHAPTER 8. DISPLAYING LVM COMPONENTS
	8.1. DISPLAYING LVM INFORMATION WITH THE LVM COMMAND
	8.2. DISPLAYING PHYSICAL VOLUMES
	8.3. DISPLAYING VOLUME GROUPS
	8.4. DISPLAYING LOGICAL VOLUMES

	CHAPTER 9. CUSTOMIZED REPORTING FOR LVM
	9.1. CONTROLLING THE FORMAT OF THE LVM DISPLAY
	9.2. LVM OBJECT DISPLAY FIELDS
	9.3. SORTING LVM REPORTS
	9.4. SPECIFYING THE UNITS FOR AN LVM REPORT DISPLAY
	9.5. DISPLAYING LVM COMMAND OUTPUT IN JSON FORMAT
	9.6. DISPLAYING THE LVM COMMAND LOG

	CHAPTER 10. CONFIGURING RAID LOGICAL VOLUMES
	10.1. RAID LOGICAL VOLUMES
	10.2. RAID LEVELS AND LINEAR SUPPORT
	10.3. LVM RAID SEGMENT TYPES
	10.4. CREATING RAID LOGICAL VOLUMES
	10.5. CREATING A RAID0 (STRIPED) LOGICAL VOLUME
	10.6. USING DM INTEGRITY WITH RAID LV
	10.6.1. Soft data corruption
	10.6.2. Creating a RAID LV with DM integrity
	10.6.3. Adding DM integrity to an existing RAID LV
	10.6.4. Removing integrity from a RAID LV
	10.6.5. Viewing DM integrity information
	10.6.6. Additional resources

	10.7. CONTROLLING THE RATE AT WHICH RAID VOLUMES ARE INITIALIZED
	10.8. CONVERTING A LINEAR DEVICE TO A RAID DEVICE
	10.9. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM LINEAR LOGICAL VOLUME
	10.10. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 DEVICE
	10.11. RESIZING A RAID LOGICAL VOLUME
	10.12. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1 DEVICE
	10.13. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL VOLUME
	10.14. SPLITTING AND MERGING A RAID IMAGE
	10.15. SETTING A RAID FAULT POLICY
	10.15.1. The allocate RAID Fault Policy
	10.15.2. The warn RAID Fault Policy

	10.16. REPLACING A RAID DEVICE IN A LOGICAL VOLUME
	10.16.1. Replacing a RAID device that has not failed
	10.16.2. Failed devices in LVM RAID
	10.16.3. Recovering a failed RAID device in a logical volume
	10.16.4. Replacing a failed RAID device in a logical volume

	10.17. CHECKING DATA COHERENCY IN A RAID LOGICAL VOLUME (RAID SCRUBBING)
	10.18. CONVERTING A RAID LEVEL (RAID TAKEOVER)
	10.19. CHANGING ATTRIBUTES OF A RAID VOLUME (RAID RESHAPE)
	10.20. CONTROLLING I/O OPERATIONS ON A RAID1 LOGICAL VOLUME
	10.21. CHANGING THE REGION SIZE ON A RAID LOGICAL VOLUME

	CHAPTER 11. SNAPSHOT LOGICAL VOLUMES
	11.1. SNAPSHOT VOLUMES
	11.2. CREATING SNAPSHOT VOLUMES
	11.3. MERGING SNAPSHOT VOLUMES

	CHAPTER 12. CREATING AND MANAGING THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES)
	12.1. THINLY-PROVISIONED LOGICAL VOLUMES (THIN VOLUMES)
	12.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES
	12.3. THINLY-PROVISIONED SNAPSHOT VOLUMES
	12.4. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES
	12.5. TRACKING AND DISPLAYING THIN SNAPSHOT VOLUMES THAT HAVE BEEN REMOVED

	CHAPTER 13. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE
	13.1. CACHING METHODS IN LVM
	13.2. LVM CACHING COMPONENTS
	13.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME
	13.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A LOGICAL VOLUME
	13.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL VOLUME
	13.6. DISABLING CACHING FOR A LOGICAL VOLUME

	CHAPTER 14. LOGICAL VOLUME ACTIVATION
	14.1. CONTROLLING AUTOACTIVATION OF LOGICAL VOLUMES
	14.2. CONTROLLING LOGICAL VOLUME ACTIVATION
	14.3. ACTIVATING SHARED LOGICAL VOLUMES
	14.4. ACTIVATING A LOGICAL VOLUME WITH MISSING DEVICES

	CHAPTER 15. CONTROLLING LVM DEVICE SCANNING
	15.1. THE LVM DEVICE FILTER
	15.2. EXAMPLES OF LVM DEVICE FILTER CONFIGURATIONS
	15.3. APPLYING AN LVM DEVICE FILTER CONFIGURATION

	CHAPTER 16. LAYERING LVM PHYSICAL VOLUMES ON TOP OF LOGICAL VOLUMES
	CHAPTER 17. CONTROLLING LVM ALLOCATION
	17.1. LVM ALLOCATION POLICIES
	17.2. PREVENTING ALLOCATION ON A PHYSICAL VOLUME
	17.3. EXTENDING A LOGICAL VOLUME WITH THE CLING ALLOCATION POLICY
	17.4. DIFFERENTIATING BETWEEN LVM RAID OBJECTS USING TAGS

	CHAPTER 18. GROUPING LVM OBJECTS WITH TAGS
	18.1. LVM OBJECT TAGS
	18.2. LISTING LVM TAGS
	18.3. ADDING LVM OBJECT TAGS
	18.4. REMOVING LVM OBJECT TAGS
	18.5. DEFINING LVM HOST TAGS
	18.6. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

	CHAPTER 19. TROUBLESHOOTING LVM
	19.1. GATHERING DIAGNOSTIC DATA ON LVM
	19.2. DISPLAYING INFORMATION ON FAILED LVM DEVICES
	19.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME GROUP
	19.4. RECOVERING AN LVM PHYSICAL VOLUME WITH DAMAGED METADATA
	19.4.1. Discovering that an LVM volume has missing or corrupted metadata
	19.4.2. Finding the metadata of a missing LVM physical volume
	19.4.3. Restoring metadata on an LVM physical volume

	19.5. REPLACING A MISSING LVM PHYSICAL VOLUME
	19.5.1. Finding the metadata of a missing LVM physical volume
	19.5.2. Restoring metadata on an LVM physical volume

	19.6. TROUBLESHOOTING LVM RAID
	19.6.1. Checking data coherency in a RAID logical volume (RAID scrubbing)
	19.6.2. Failed devices in LVM RAID
	19.6.3. Recovering a failed RAID device in a logical volume
	19.6.4. Replacing a failed RAID device in a logical volume

	19.7. TROUBLESHOOTING INSUFFICIENT FREE EXTENTS FOR A LOGICAL VOLUME
	19.7.1. Volume groups
	19.7.2. Rounding errors in LVM output
	19.7.3. Preventing the rounding error when creating an LVM volume

	19.8. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME WARNINGS FOR MULTIPATHED LVM DEVICES
	19.8.1. Root cause of duplicate PV warnings
	19.8.2. Cases of duplicate PV warnings
	19.8.3. The LVM device filter
	19.8.4. Example LVM device filters that prevent duplicate PV warnings
	19.8.5. Applying an LVM device filter configuration
	19.8.6. Additional resources

